Answer:
Explanation:
The speed of the astronaut can be found with the help of law of conservation of momentum .
mv = MV , M is mass of astronaut , m is mass of object thrown , v is velocity of object thrown and V is velocity of astronaut.
Putting the values
77.5 x V = .94 x 12
V = .14554 m /s
This will be the uniform velocity of astronaut.
Distance to be covered = 37.3 m
time taken = distance / velocity
= 37.3 / .14554
= 256.28 s
= 4.27 minutes.
Answer:60 rev/min
Explanation:
Given
angular speed of first shaft 
Moment of inertia of second shaft is seven times times the rotational speed of the first i.e. If I is the moment of inertia of first wheel so moment of inertia of second is 7 I
As there is no external torque therefore angular momentum is conserved




Kinetic energy is the energy possessed by an object when that object is moving in space. The higher the mass of an object or higher the speed of an object the higher the kinetic energy will be.
So to calculate the Kinetic Energy we can use the following formula
K.E=(1/2)*m*v^2
Inserting the values in formula gives:
K.E=1/2*7.26*2^2
14.52J
This is the final answer which gives the kinetic energy of the ball.
Answer:
1). average velocity= displacement/time
= here displacement is zero
= 0/1
= 0 m/s
2). average speed= total distance/time
=2πr/1
=(2×22/7×5/10)/1
22/7
3.14 km/h
hope it helps you
please mark brainliest
Explanation:
Onduction in gas is slower than in liquids and solids because the particles in a gas collide less often. Conduction in metals is faster because the electrons are free to move about