Answer:
a) Pb= 200 PA
b).work done= -3600 joules
c).3600joules
D).the system works under isothermal condition so no heat was transferred
Explanation:
2.0 moles of a monatomic ideal gas expands isothermally from state a to state b, Pa = 600 Pa, Va = 3.0 m3, and Vb = 9.0 m3.
a). PbVb= PaVa
Pb= (PaVa)/VB
Pb= (600*3)/9
Pb= 1800/9
Pb= 200 PA
b). work done= n(Pb-Pa)(Vb-Va)
Work done= 2*(200-600)(9-3)
Work done= -600(6)
Work done=- 3600 Pam³
work done= -3600 joules
C). Change in internal energy I the work done on the system
= 3600joules
D).the system works under isothermal condition so no heat was transferred
Complete Question
A satellite in geostationary orbit is used to transmit data via electromagnetic radiation. The satellite is at a height of 35,000 km above the surface of the earth, and we assume it has an isotropic power output of 1 kW (although, in practice, satellite antennas transmit signals that are less powerful but more directional).
Reception devices pick up the variation in the electric field vector of the electromagnetic wave sent out by the satellite. Given the satellite specifications listed in the problem introduction, what is the amplitude E0 of the electric field vector of the satellite broadcast as measured at the surface of the earth? Use ϵ0=8.85×10^−12C/(V⋅m) for the permittivity of space and c=3.00×10^8m/s for the speed of light.
Answer:
The electric field vector of the satellite broadcast as measured at the surface of the earth is 
Explanation:
From the question we are told that
The height of the satellite is 
The power output of the satellite is 
Generally the intensity of the electromagnetic radiation of the satellite at the surface of the earth is mathematically represented as

substituting values


This intensity of the electromagnetic radiation of the satellite at the surface of the earth can also be mathematically represented as

Where
is the amplitude of the electric field vector of the satellite broadcast so

substituting values


Answer: it depends on the mass of the pendulum or on the size of the arc through which it swings.
Explanation:
Answer:
There will be two forces acting on her: Gravitational force and Air resisitence
Positive Work.
Negative Work.
Case of zero work done.
Displacement at an angle to the force.
Energy.
Kinetic Energy.
work is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, it is often represented as the product of force and displacement.