Answer:
The coefficient of kinetic friction is 0.51.
Explanation:
Given that,
Applied force, F = 75 N
Mass of a box, m = 15 kg
The acceleration of the box is 3 m/s²
We need to find the coefficient of kinetic friction. It is given by the formula as follows :

Where,
, is the normal force

So, the coefficient of kinetic friction is 0.51.
Answer:
The time taken by the rock to reach the ground is 0.569 seconds.
Explanation:
Given that,
A student throws a rock horizontally off a 5.0 m tall building, s = 5 m
The initial speed of the rock, u = 6 m/s
We need to find the time taken by the rock to reach the ground. Using second equation of motion to find it. We get :

So, the time taken by the rock to reach the ground is 0.569 seconds. Hence, this is the required solution.
This happens because of the earth rotating around the sun. So we see different constellations for different seasons.
Answer: 3.13 m
Explanation:
Given
mas of the ball is m=10 kg
The ball rolls down a vertical distance of 5 m
Spring constant of spring is 
Here, the potential energy of the ball converted into kinetic energy which in turn converts into elastic potential energy
![\Rightarrow mgh=\frac{1}{2}kx^2\quad [\text{x=compression in the spring}]\\\\\Rightarrow 10\times 9.8\times 5=\frac{1}{2}\cdot 100\cdot x^2\\\Rightarrow x=\sqrt{9.8}\\\Rightarrow x=3.13\ m](https://tex.z-dn.net/?f=%5CRightarrow%20mgh%3D%5Cfrac%7B1%7D%7B2%7Dkx%5E2%5Cquad%20%5B%5Ctext%7Bx%3Dcompression%20in%20the%20spring%7D%5D%5C%5C%5C%5C%5CRightarrow%2010%5Ctimes%209.8%5Ctimes%205%3D%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20100%5Ccdot%20x%5E2%5C%5C%5CRightarrow%20x%3D%5Csqrt%7B9.8%7D%5C%5C%5CRightarrow%20x%3D3.13%5C%20m)
Thus, the spring compresses by 3.13 m.