For this, we first calculate molecular weight of MgSiO₃:
Atomic masses:
Mg = 24
Si = 28
O = 16
Mr = 24 + 28 + 16 x 3
Mr = 100
moles = mass / Mr
moles = 237 / 100
moles = 2.37
Answer:
(3R,4R)-4-bromohexan-3-ol
Explanation:
In this case, we have reaction called <u>halohydrin formation</u>. This is a <u>markovnikov reaction</u> with <u>anti configuration</u>. Therefore the halogen in this case "Br" and the "OH" must have <u>different configurations</u>. Additionally, in this molecule both carbons have the <u>same substitution</u>, so the "OH" can go in any carbon.
Finally, in the product we will have <u>chiral carbons</u>, so we have to find the absolute configuration for each carbon. On carbon 3 we will have an "R" configuration on carbon 4 we will have also an "R" configuration. (See figure 1)
I hope it helps!
Answer:
• potential for a species to increase in number
• the heritable genetic variation/ which results from mutation in dna
• the size of a population increases
• competiton for resources that are limited in that specific environment.
Explanation:
these are all factors that would affect natural selection although there are many more.
Answer:
Trial Number of moles
1 0.001249mol
2 0.001232mol
3 0.001187 mol
Explanation:
To calculate the <em>number of moles of tritant</em> you need its<em> molarity</em>.
Since the<em> molarity</em> is not reported, I will use 0.1000M (four significant figures), which is used in other similar problems.
<em>Molarity</em> is the concentration of the solution in number of moles of solute per liter of solution.
In this case the solute is <em>NaOH</em>.
The formula is:

Solve for the <em>number of moles:</em>

Then, using the molarity of 0.1000M and the volumes for each trial you can calculate the number of moles of tritant.
Trial mL liters Number of moles
1 12.49 0.01249 0.01249liters × 0.1000M = 0.001249mol
2 12.32 0.01232 0.01232liters × 0.1000M = 0.001232mol
3 11.87 0.01187 0.01187liters × 0.1000M = 0.001187 mol