In contrast to an inhibitory transmitter, an excitatory transmitter encourages the development of an electrical signal known as an action potential in the receiving neuron.
Depolarization is brought on by excitatory neurotransmitters (decrease in membrane potential). Hyperpolarization is brought on by inhibitory neurotransmitters (increase in membrane potential).
Neurotransmitters fall into two categories: excitatory and inhibitory. While inhibitory neurotransmitters work to stop an action potential, excitatory neurotransmitters function to activate receptors on the postsynaptic membrane and enhance the effects of the action potential.
While inhibitory neurons release neurotransmitters that prevent action potential firing, excitatory neurons release neurotransmitters that cause an action potential to occur in the postsynaptic neuron.
Let's know more about Excitatory & Inhibitory
brainly.com/question/13021637
Answer:
A.
Explanation:
A redox reaction is a reaction when oxidation states (or numbers) change during reaction.
<span>The simplest level of organization for living things is a single organelle, which is composed of aggregates of macromolecules. so it is false</span>
For a comparison of the nucleus 5626fe, the density of the nucleus 112 48cd is mathematically given as the same.
n(Cd) / n(Fe)=1
<h3>What is the density of the nucleus 112 48cd?</h3>
Generally, the equation for the density is mathematically given as
d=\frac{A}{4/3}\piR^3
Therefore
n(Cd) / n(Fe) = [A (Cd) / (A Fe) ] * [ R (Fe) / R (Cd)]^3
n(Cd) / n(Fe)= (112 / 56 ) * (1/1.26)3
n(Cd) / n(Fe)=1
In conclusion, The ratio of n(Cd) = n(Fe) is 1, hence same
Read more about density
brainly.com/question/14010194
Answer:
The new pressure is 53.3 kPa
Explanation:
This problem can be solved by this law. when the volume remains constant, pressure changes directly proportional as the Aboslute T° is modified.
T° increase → Pressure increase
T° decrease → Pressure decrease
In this case, temperature was really decreased. So the pressure must be lower.
P₁ / T₁ = P₂ / T₂
80 kPa / 300K = P₂/200K
(80 kPa / 300K) . 200 K = P₂ → 53.3 kPa