1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
balandron [24]
3 years ago
11

Why would a landslide be more likely on a steep mountain than on a gently sloping hill?

Physics
2 answers:
inn [45]3 years ago
6 0
If it is very steep and you throw a little rock down it will be more likely to make all the rocks fall easier than a gently sloped hill that if you throw the same size rock down it would move nothing but little rocks.
Serjik [45]3 years ago
4 0
Steep mountain, due to gravity.
You might be interested in
A person run 21.0 km west then runs 10.0 km east what is the persons distance
VashaNatasha [74]

Answer:

31.0 km

Explanation:

21.0+10.0=31.0 km

6 0
3 years ago
Read 2 more answers
In a local diner, a customer slides an empty coffee cup down the counter for a refill. The cup slides off the counter and strike
zysi [14]

a) t=\sqrt{\frac{2h}{g}}

b) v=\frac{d}{\sqrt{\frac{2h}{g}}}

c) v=\sqrt{d^2(\frac{g}{2h})+(2gh)}

d) \theta=tan^{-1}(\frac{2h}{d}) (radians)

Explanation:

a)

The motion of the cup sliding off the counter is the motion of a projectile, consisting of two independent motions:

- A uniform motion along the horizontal direction

- A uniformly accelerated motion (free fall) along the vertical direction

The time of flight of the cup is entirely determined by the vertical motion, therefore we can use the suvat equation:

s=ut+\frac{1}{2}at^2

where here:

s=h (the vertical displacement is the height of the counter)

u=0 (the initial vertical velocity of the cup is zero)

a=g (the vertical acceleration is the acceleration of gravity)

Solving for t, we find the time of flight of the cup:

h=0+\frac{1}{2}gt^2\\t=\sqrt{\frac{2h}{g}}

b)

To solve this part, we just analyze the horizontal motion of the cup.

Here we know that the horizontal motion of the cup is uniform: this means that is horizontal speed is constant during the whole motion, and it is actually equal to the speed at which the mug leaves the counter.

For a uniform motion, the speed is given by

v=\frac{d}{t}

where

d is the distance covered

t is the time taken

Here, the distance covered is d, the distance from the base of the counter, while the time taken is the time of flight:

t=\sqrt{\frac{2h}{g}}

Substituting into the previous equation, we find the speed of the mug as it leaves the counter:

v=\frac{d}{\sqrt{\frac{2h}{g}}}

c)

Here we want to find the speed of the cup immediately before it hits the floor.

Here we have to consider that while the mug falls, its vertical speed increases, while the horizontal speed remains constant.

Therefore, the horizontal speed of the cup before it hits the ground is:

v_x=\frac{d}{\sqrt{\frac{2h}{g}}}=d\sqrt{\frac{g}{2h}}

The vertical speed instead is given by the suvat equation:

v_y=u_y + at

where:

u_y=0 is the initial vertical velocity

a=g is the acceleration

t=\sqrt{\frac{2h}{g}} is the time of flight

Substituting,

v_y = 0 +g(\sqrt{\frac{2h}{g}})=\sqrt{2gh}

The actual speed of the cup just before it hits the floor is the resultant of the horizontal and vertical speeds, so it is:

v=\sqrt{v_x^2+v_y^2}=\sqrt{d^2(\frac{g}{2h})+(2gh)}

d)

Just before hitting the floor, the velocity of the cup has two components:

v_x=d\sqrt{\frac{g}{2h}} is the horizontal component (in the forward direction)

v_y=\sqrt{2gh} is the vertical component (in the downward direction)

Since the two components are perpendicular to each other, the angle of the direction is given by the equation

tan \theta = \frac{v_y}{v_x}

where here \theta is measured as below the horizontal direction.

Substituting the expressions for v_x,v_y, we find:

tan \theta = \frac{\sqrt{2gh}}{d\sqrt{\frac{g}{2h}}}=\frac{2h}{d}

So

\theta=tan^{-1}(\frac{2h}{d}) (radians)

4 0
3 years ago
1. During the Middle Ages, armies often attacked castles using large siege engines such as the counterweight trebuchet at left.
fredd [130]

Answer: Some challenges that I could see would be the walls, possibly a moat, tar, and the towers.

Explanation: The wall is obliviously a main problem, trying to get over it or through it is a difficult challenge. The moat (if it has one) means that there is more than likely only one way to get in or out.  If it does have tar it means that the attackers are going to be put in a "sticky situation" And finally the towers, they have people at the top shooting arrows down at you, or throwing things at you.

8 0
3 years ago
What is the ratio of escape speed from earth to circular orbital speed? ignore air resistance.
klio [65]
About 40 000 km/h
Here you go:

8 0
3 years ago
Read 2 more answers
A speed boat moving at a velocity of 25 m/s runs out of gas and drifts to a stop 3 minutes later 100 meters away. What is its ra
mr_godi [17]
<h2>Answer:</h2>

The rate of deceleration is -0.14m/s^{2}

<h2>Explanation:</h2>

Using one of the equations of motion;

v = u + at

where;

v = final velocity of the boat = 0m/s (since the boat decelerates to a stop)

u = initial velocity of the boat = 25m/s

a = acceleration of the boat

t = time taken for the boat to accelerate/decelerate from u to v =   3 minutes

<em>Convert the time t = 3 minutes to seconds;</em>

=> 3 minutes = 3 x 60 seconds = 180seconds.

<em>Substitute the values of v, u, t into the equation above. We have;</em>

v =  u + at

=> 0 = 25 + a(180)

=> 0 = 25 + 180a

<em>Make a the subject of the formula;</em>

=> 180a = 0 - 25

=> 180a = -25

=> a = -25/180

=> a = -0.14m/s^{2}

The negative value of a shows that the boat is decelerating.

Therefore, the rate of deceleration of the speed boat is 0.14m/s^{2}

5 0
3 years ago
Other questions:
  • a step of science investigation tells you to walk 3m in a straight line, then turn 60 degrees to your right. you repeat this ste
    8·2 answers
  • Question 11 (2 points)
    8·1 answer
  • A physical pendulum consists of a uniform solid disk (of radius R 2.35 cm) supported in a vertical plane by a pivot located a di
    10·1 answer
  • HELP ASAP!!
    13·1 answer
  • A 0.0121-kg bullet is fired straight up at a falling wooden block that has a mass of 4.99 kg. The bullet has a speed of 898 m/s
    10·1 answer
  • Please help me tbnmk,mnbnm
    13·2 answers
  • How are the resources of europe both an advantige and disadvantage to the life Europe
    6·1 answer
  • How many excess electrons must be present on each sphere if the magnitude of the force of repulsion between them is
    6·1 answer
  • The fact that some asteroids cluster in what are called asteroid families is probably the result of:
    8·1 answer
  • Acceleration of a particle moving along x axis is given
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!