Answer:
Pressure = ρgh
pressure (p) is measured in pascals (Pa)
density (ρ) is measured in kilograms per metre cubed (kg/m3)
The fore of gravitational field strength (g) is measured in N/kg or m/s 2
height of column (h) is measured in metres (m)
Answer = 235,200 Pa
Explanation:
Pressure = ρgh
Pressure = 1,000 x 9.8 x 24
Pressure = 235,200 Pa
Answer:
D. Pauli's exclusion principle
Explanation:
<em>A. Newton's laws</em> are related to the motion, they state that "Every object in a state of uniform motion will remain in that state of motion unless an external force acts on it", " Force equals mass times acceleration." and " For every action there is an equal and opposite reaction"
<em>B. Bohr's law </em>depicts an atom as a small, positively charged nucleus surrounded by electrons. These electrons travel in circular orbits around the nucleus.
<em>C. Aufbau principle</em>, also called the building-up principle or the aufbau rule, states that in the ground state of an atom or ion, electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels
<em>D. Pauli's exclusion principle</em> states that <em>no two fermions (e.g., electrons) in an atom can have the same set of quantum numbers,</em> hence they have to "pile up" or "build up" into higher energy levels.
I hope you find this information useful and interesting! Good luck!
Question 1) excited and moving around a lot.
Question 2) heat
Question 3) specific heat
Question 4) As temperature increases, energy transferred increases.
Hope these answers help!
When someone stands against a locker and is does not moving at all, then there will be no displacement and since displacement = 0
Work done also becomes equal to zero.
Work done is usually defined as change in energy. Since the work done is zero there has been no energy used.
Answer:
16613 m/s
Explanation:
Given that
mass of the fly, m = 0.55 g = 0.55*10^-3 kg
Kinetic Energy of the fly, E = 7.6*10^4 J
Speed of the fly, v = ? m/s
We know that the Kinetic Energy is that energy that an object, in this case, the fly, possesses due to its motion.
The Kinetic Energy, KE of any object is represented by the formula
KE = 1/2 * m * v²
If we substitute the values in the relation, we have,
7.6*10^4 = 1/2 * 0.55*10^-3 * v²
v² = (15.2*10^4) / 0.55*10^-3
v² = 2.76*10^8
v = √2.76*10^8
v = 16613 m/s
Thus, the fly would need a speed of 16.6 km/s in order to have a Kinetic Energy of 7.6*10^4 J