First we need to find the acceleration of the skier on the rough patch of snow.
We are only concerned with the horizontal direction, since the skier is moving in this direction, so we can neglect forces that do not act in this direction. So we have only one horizontal force acting on the skier: the frictional force,

. For Newton's second law, the resultant of the forces acting on the skier must be equal to ma (mass per acceleration), so we can write:

Where the negative sign is due to the fact the friction is directed against the motion of the skier.
Simplifying and solving, we find the value of the acceleration:

Now we can use the following relationship to find the distance covered by the skier before stopping, S:

where

is the final speed of the skier and

is the initial speed. Substituting numbers, we find:
The kinetic energy is
.
Explanation:
The kinetic energy of an object is given by

where
K is the kinetic energy of the object
m is the mass of the object
v is the speed of the object
For the comet in this problem, we have:
is its mass
is the speed
First, we convert the speed from km/h to m/s:

Therefore, the kinetic energy of the comet is

Learn more about kinetic energy here:
brainly.com/question/6536722
#LearnwithBrainly
Answer:

Explanation:
This is a projectile motion problem. We will first separate the motion into x- and y-components, apply the equations of kinematics separately, then we will combine them to find the initial velocity.
The initial velocity is in the x-direction, and there is no acceleration in the x-direction.
On the other hand, there no initial velocity in the y-component, so the arrow is basically in free-fall.
Applying the equations of kinematics in the x-direction gives

For the y-direction gives

Combining both equation yields the y_component of the final velocity

Since we know the angle between the x- and y-components of the final velocity, which is 180° - 2.8° = 177.2°, we can calculate the initial velocity.

in a one dimensional collision, a 4kg object with 5ms^1 and 6 kg object with 2ms^1 have initial velocity, the magnitude of impulse is 12 , 18
given,
mass 1 = 4kg
mass 2 = 6kg
velocity 1 = 5ms^1
velocity 2 = 2ms^1
impulse 1 = 4*(5-2)
= 12
Impulse 2 = 6*(5-2)
= 18
Learn more about impulse here
brainly.com/question/16980676
#SPJ4
Answer:
A) coil A
Explanation:
According to Faraday, Induced emf is given as;
E.M.F = ΔФ/t
ΔФ = BACosθ
where;
ΔФ is change in magnetic flux
θ is the angle between the magnetic field, B, and the normal to the loop of area A
A is the area of the loop
B is the magnetic field
From the equation above, induced emf depends on the strength of the magnetic field.
Both coils have the same area and are oriented at right angles to the field.
Coil A has a magnetic field strength of 10-T which is greater than 1 T of coil B, thus, coil A will have a greater emf induced in it.