Answer:
Technician B is correct
Explanation:
An oxygen sensor will generate about 1.0 volts when the fuel mixture is rich and there is little unburned oxygen in the exhaust. When the mixture is lean, the sensor's output voltage will drop down to about 0.1 volts.
An o2 sensor cannot accurately measure how rich or how well an exhaust system is.
Therefore, Technician B is correct.
Answer:
3333.33 kg/m³
Explanation:
Density: This can be defined as the ratio of the mass of a body to its volume.
The unit of density is kg/m³.
From Archimedes principle,
R.d = W/U = D/D'
Where R.d = relative density, W = weight of the object in air, u = upthrust in water, D = Density of the object, D' = Density of water.
W/U = D/D'
making D the subject of the equation
D = D'(W/U).......................... Equation 1
Given: W = 5.0 N, U = 5.0 -3.5 = 1.5 N, D' = 1000 kg/m³
Note: U = lost in weight = weight in air - weight in water
Substitute into equation 1
D = 1000(5/1.5)
D = 3333.33 kg/m³
Thus the density of the object = 3333.33 kg/m³
Hello,
The answer is option C "absolute".
Reason:
The answer is option C because the three names for temperatures are: Kelvin, Celsius, and Fahrenheit therefore your answer is option C.
If you need anymore help feel free to ask me!
Hope this helps!
~Nonportrit
Answer: option A) initially increases, then decreases.
Justification:
The increase of the rate of effective collisions among particles as the temperature increases is explained by the collision theory in virtue of the increase of the kinetic energy.
This is, as the temperature increase so the kinetic energy increase and the higher the kinetic energy the greater the number of collisions and the greater the chances that this energy overcome the activation energy (the energy needed to start the reaction).
Now, as the reaction progress the number of reactants particles naturally decrease (some of them have been converted into product) so this lower number of particles means lower concentration which means lower collisions and, thereafter, a decrease in the reaction rate.