Answer:
3.4 mT
Explanation:
L = 0.53 m
i = 7.5 A
Theta = 19 degree
F = 4.4 × 10^-3 N
Let B be the strength of magnetic field.
Force on a current carrying conductor placed in a magnetic field.
F = i × L × B × Sin theta
4.4 × 10^-3 = 7.5 × 0.53 × B × Sin 19
B = 3.4 × 10^-3 Tesla
B = 3.4 mT
true or false: a image created by an object located inside the focal point is virtual, enlarged, and upright
True :D
g Generally the accepted value of acceleration due to gravity is 9.801 
as per the question the acceleration due to gravity is found to be 9.42
in an experiment performed.
the difference between the ideal and observed value is 0.381.
hence the error is -
=3.88735 percent
the error is not so high,so it can be accepted.
now we have to know why this occurs-the equation of time period of the simple pendulum is give as-![T=2\pi\sqrt[2]{l/g}](https://tex.z-dn.net/?f=T%3D2%5Cpi%5Csqrt%5B2%5D%7Bl%2Fg%7D)

As the experiment is done under air resistance,so it will affect to the time period.hence the time period will be more which in turn decreases the value of g.
if this experiment is done in a environment of zero air resistance,we will get the value of g which must be approximately equal to 9.801 