1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dsp73
4 years ago
15

Naphthalene, C 10 H 8 , melts at 80.2°C. If the vapour pressure of the liquid is 1.3 kPa at 85.8°C and 5.3 kPa at 119.3°C, use t

he Clausius–Clapeyron equation to calculate (a) the enthalpy of vaporization, (b) the normal boiling point, and (c) the enthalpy of vaporization at the boiling point.
Physics
1 answer:
a_sh-v [17]4 years ago
5 0

Answer :

(a) The value of \Delta H_{vap} is 48.6 kJ/mol

(b) The the normal boiling point is 489.2 K

(c) The entropy of vaporization at the boiling point is 99.3 J/K

Explanation :

(a) To calculate \Delta H_{vap} of the reaction, we use clausius claypron equation, which is:

\ln(\frac{P_2}{P_1})=\frac{\Delta H_{vap}}{R}[\frac{1}{T_1}-\frac{1}{T_2}]

where,

P_1 = vapor pressure at temperature 85.8^oC = 1.3 kPa

P_2 = vapor pressure at temperature 119.3^oC = 5.3 kPa

\Delta H_{vap} = Enthalpy of vaporization = ?

R = Gas constant = 8.314 J/mol K

T_1 = initial temperature = 85.8^oC=[85.8+273]K=358.8K

T_2 = final temperature = 119.3^oC=[119.3+273]K=392.3K

Putting values in above equation, we get:

\ln(\frac{5.3kPa}{1.3kPa})=\frac{\Delta H_{vap}}{8.314J/mol.K}[\frac{1}{358.5}-\frac{1}{392.3}]\\\\\Delta H_{vap}=48616.4J/mol=48.6kJ/mol

Therefore, the value of \Delta H_{vap} is 48.6 kJ/mol

(b) The clausius claypron equation is:

\ln(\frac{P_2}{P_1})=\frac{\Delta H_{vap}}{R}[\frac{1}{T_1}-\frac{1}{T_2}]

where,

P_1 = vapor pressure at temperature 85.8^oC = 1.3 kPa

P_2 = vapor pressure at temperature normal boiling point = 101.3 kPa

\Delta H_{vap} = Enthalpy of vaporization = 48.6 kJ/mol

R = Gas constant = 8.314\times 10^{-3}kJ/mol.K

T_1 = initial temperature = 85.8^oC=[85.8+273]K=358.8K

T_2 = final temperature = ?

Putting values in above equation, we get:

\ln(\frac{101.3kPa}{1.3kPa})=\frac{48.6kJ/mol}{8.314\times 10^{-3}kJ/mol.K}[\frac{1}{358.5}-\frac{1}{T_2}]\\\\T_2=489.2K

Therefore, the normal boiling point is 489.2 K

(c) Now we have to determine the entropy of vaporization at the boiling point.

\Delta S_{vap}=\frac{\Delta H_{vap}}{T_b}

where,

\Delta S_{vap} = entropy of vaporization = ?

\Delta H_{vap} = enthalpy of vaporization = 48.6 kJ/mol

T_b = boiling point = 489.2 K

Now put all the given values in the above formula, we get:

\Delta S_{vap}=\frac{48.6kJ/mol}{489.2K}=99.3J/K

Therefore, the entropy of vaporization at the boiling point is 99.3 J/K

You might be interested in
Help me, please
Mars2501 [29]
Wish I could help you you rock
6 0
3 years ago
How much thermal energy is created in the slope and the tube during the ascent of a 30-m-high, 120-m-long slope?
charle [14.2K]
<span>The change in internal energy is only gravitional PE because the tube is being drug up at a constant speed. Since it is at a constant speed, the change in KE is 0. Change in PE = m*g*h = 78 kg * 10 m/s^2 * 30 m = 23400 J Work done on the system is from the force Work = force * distance = 350 N * 120 m = 42000 J So, work added 42000 J to the system, but the rider's energy only increased 23400 J. Therefore, friction took up the difference. Friction is where the thermal energy comes from Q = 42000 J - 23400 J = 18600 J. Therfore, friction generated 18600 J of heat to the surroundings.</span>
7 0
4 years ago
I WILL GIVE BRAINLIEST IF SOMEONE GETS THIS......
pav-90 [236]

Answer:

Explanation:

a)

Firstly to calculate the total mass of the can before the metal was lowered we need to add the mass of the eureka can and the mass of the water in the can. We don't know the mass of the water but we can easily find if we know the volume of the can. In order to calculate the volume we would have to multiply the area of the cross section by the height. So we do the following.

100cm^{2} x 10cm = 1000cm^{3}

Now in order to find the mass that water has in this case we have to multiply the water's density by the volume, and so we get....

\frac{1g}{cm^{3} } x 1000cm^{3} = 1000g or 1kg

Knowing this, we now can calculate the total mass of the can before the metal was lowered, by adding the mass of the water to the mass of the can. So we get....

1000g + 100g = 1100g or 1.1kg

b)

The volume of the water that over flowed will be equal to the volume of the metal piece (since when we add the metal piece, the metal piece will force out the same volume of water as itself, to understand this more deeply you can read the about "Archimedes principle"). Knowing this we just have to calculate the volume of the metal piece an that will be the answer. So this time in order to find volume we will have to divide the total mass of the metal piece by its density. So we get....

20g ÷ \frac{8g}{cm^{3} } = 2.5 cm^{3}

c)

Now to find out the total mass of the can after the metal piece was lowered we would have to add the mass of the can itself, mass of the water inside the can, and the mass of the metal piece. We know the mass of the can, and the metal piece but we don't know the mass of the water because when we lowered the metal piece some of the water overflowed, and as a result the mass of the water changed. So now we just have to find the mass of the water in the can keeping in mind the fact that 2.5cm^{3} overflowed. So now we the same process as in number a) just with a few adjustments.

\frac{1g}{cm^{3} } x (1000cm^{3} - 2.5cm^{3}) = 997.5g

So now that we know the mass of the water in the can after we added the metal piece we can add all the three masses together (the mass of the can. the mass of the water, and the mass of the metal piece) and get the answer.

100g + 997.5g + 20g = 1117.5g or 1.1175kg

5 0
3 years ago
Which type of exercise is weightlifting?
MatroZZZ [7]

The answer is option B "anaerobic." Weightlifting deals with stress to the muscles when lifting weights and due time the muscles will begin to adapt and get stronger. Other examples of anaerobic exercise are things like: weight training, sprinting, cycling, and jumping anything that has short exertion, and high-intensity movement is an anaerobic exercise.

Hope this helps!

Nonportrit

5 0
4 years ago
Read 2 more answers
PlzHELP
Naddika [18.5K]
 Distance is a scalar quantity that refers to "how much ground an object has covered" during its motion.Displacement<span> is a vector quantity that refers to "how far out of place an object is"; it is the object's overall change in position.

</span>To calculate displacement<span>, simply draw a vector from your starting point to your final position and solve for the length of this line. If your starting and ending position are the same, like your circular 5K route, then your </span>displacement<span> is 0. In physics, </span>displacement<span> is represented by Δs.
 
 For me to solve this I would need to know the time, but I can give you a handy displacement calculator I used that helped me. 
 
https://www.easycalculation.com/physics/classical-physics/constant-acc-displacement.php

Hope I helped. 

</span> 

8 0
3 years ago
Other questions:
  • When forming a bond, an atom that has 3 electrons in its second shell and a filled first shell will?
    9·1 answer
  • When two or more forces act together on an object what do they combine to form
    6·1 answer
  • A car was moving 110. km/hour.
    6·1 answer
  • What is the vacuole in a plant cell?
    9·2 answers
  • Why does pumping a soccer ball with an air pump increase the pressure inside the ball? the pump puts more gas particles inside t
    13·2 answers
  • What are magnetic materials
    12·1 answer
  • Due Tomorrow Hellpp plzzzz
    9·1 answer
  • A bodybis thrown vertically upward with velocity of 30m/s calculate the the maximum height attained​
    9·2 answers
  • Frieda stands on a hill with a slope of 62°. If her mass is 49 kg, what is the
    14·1 answer
  • A pendulum with a length of 1.00 m is released from an initial angle of 15.0° . After 1000s , its amplitude has been reduced by
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!