1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dsp73
3 years ago
15

Naphthalene, C 10 H 8 , melts at 80.2°C. If the vapour pressure of the liquid is 1.3 kPa at 85.8°C and 5.3 kPa at 119.3°C, use t

he Clausius–Clapeyron equation to calculate (a) the enthalpy of vaporization, (b) the normal boiling point, and (c) the enthalpy of vaporization at the boiling point.
Physics
1 answer:
a_sh-v [17]3 years ago
5 0

Answer :

(a) The value of \Delta H_{vap} is 48.6 kJ/mol

(b) The the normal boiling point is 489.2 K

(c) The entropy of vaporization at the boiling point is 99.3 J/K

Explanation :

(a) To calculate \Delta H_{vap} of the reaction, we use clausius claypron equation, which is:

\ln(\frac{P_2}{P_1})=\frac{\Delta H_{vap}}{R}[\frac{1}{T_1}-\frac{1}{T_2}]

where,

P_1 = vapor pressure at temperature 85.8^oC = 1.3 kPa

P_2 = vapor pressure at temperature 119.3^oC = 5.3 kPa

\Delta H_{vap} = Enthalpy of vaporization = ?

R = Gas constant = 8.314 J/mol K

T_1 = initial temperature = 85.8^oC=[85.8+273]K=358.8K

T_2 = final temperature = 119.3^oC=[119.3+273]K=392.3K

Putting values in above equation, we get:

\ln(\frac{5.3kPa}{1.3kPa})=\frac{\Delta H_{vap}}{8.314J/mol.K}[\frac{1}{358.5}-\frac{1}{392.3}]\\\\\Delta H_{vap}=48616.4J/mol=48.6kJ/mol

Therefore, the value of \Delta H_{vap} is 48.6 kJ/mol

(b) The clausius claypron equation is:

\ln(\frac{P_2}{P_1})=\frac{\Delta H_{vap}}{R}[\frac{1}{T_1}-\frac{1}{T_2}]

where,

P_1 = vapor pressure at temperature 85.8^oC = 1.3 kPa

P_2 = vapor pressure at temperature normal boiling point = 101.3 kPa

\Delta H_{vap} = Enthalpy of vaporization = 48.6 kJ/mol

R = Gas constant = 8.314\times 10^{-3}kJ/mol.K

T_1 = initial temperature = 85.8^oC=[85.8+273]K=358.8K

T_2 = final temperature = ?

Putting values in above equation, we get:

\ln(\frac{101.3kPa}{1.3kPa})=\frac{48.6kJ/mol}{8.314\times 10^{-3}kJ/mol.K}[\frac{1}{358.5}-\frac{1}{T_2}]\\\\T_2=489.2K

Therefore, the normal boiling point is 489.2 K

(c) Now we have to determine the entropy of vaporization at the boiling point.

\Delta S_{vap}=\frac{\Delta H_{vap}}{T_b}

where,

\Delta S_{vap} = entropy of vaporization = ?

\Delta H_{vap} = enthalpy of vaporization = 48.6 kJ/mol

T_b = boiling point = 489.2 K

Now put all the given values in the above formula, we get:

\Delta S_{vap}=\frac{48.6kJ/mol}{489.2K}=99.3J/K

Therefore, the entropy of vaporization at the boiling point is 99.3 J/K

You might be interested in
A message is sent from the Galileo spacecraft orbiting Jupiter to earth at a distance of 928,000,000km. If it took the signal 51
expeople1 [14]
<span>The answer would approximately be 299,741.60</span>
6 0
3 years ago
Read 2 more answers
Why is the process of photosynthesis important to food webs?
Slav-nsk [51]

Answer:

to know what that specif animal or thing does in the food chain

Explanation:

5 0
3 years ago
SOMEONE PLSSSS HELP ME WITH THIS QUESTION!!
Hitman42 [59]
The answer is indeed B
4 0
3 years ago
A package of mass m is released from rest at a warehouse loading dock and slides down a 3.0-m-high frictionless chute to a waiti
LuckyWell [14K]

Answer:

The speed of the package of mass m right before the collision = 7.668\ ms^-1

Their common speed after the collision = 2.56\ ms^-1

Height achieved by the package of mass m when it rebounds = 0.33\ m

Explanation:

Have a look to the diagrams attached below.

a.To find the speed of the package of mass m right before collision we have to use law of conservation of energy.

K_{initial} + U_{initial} = K_{final}+U_{final}

where K is Kinetic energy and U is Potential energy.

K= \frac{mv^2}{2} and U= mgh

Considering the fact  K_{initial} = 0\ and U_{final} =0 we will plug out he values of the given terms.

So V_{1}{(initial)} =\sqrt{2gh} = \sqrt{2\times9.8\times3} = 7.668\ ms^-1

Keypoints:

  • Sum of energies and momentum are conserved in all collisions.
  • Sum of KE and PE is also known as Mechanical energy.
  • Only KE is conserved for elastic collision.
  • for elastic collison we have e=1 that is co-efficient of restitution.

<u>KE = Kinetic Energy and PE = Potential Energy</u>

b.Now when the package stick together there momentum is conserved.

Using law of conservation of momentum.

m_1V_1(i) = (m_1+m_2)V_f where V_1{i} =7.668\ ms^-1.

Plugging the values we have

m\times 7.668 = (3m)\times V_{f}

Cancelling m from both sides and dividing 3 on both sides.

V_f = 2.56\ ms^-1

Law of conservation of energy will be followed over here.

c.Now the collision is perfectly elastic e=1

We have to find the value of V_{f} for m mass.

As here V_{f}=-2.56\ ms^-1 we can use that if both are moving in right ward with 2.56 then there is a  -2.56 velocity when they have to move leftward.

The best option is to use the formulas given in third slide to calculate final velocity of object 1.

So

V_{1f} = \frac{m_1-m_2}{m_1+m_2} \times V_{1i}= \frac{m-2m}{3m} \times7.668=\frac{-7.668}{3} = -2.56\ ms^-1

Now using law of conservation of energy.

K_{initial} + U_{initial} = K_{final}+U_{final}

\frac{m\times V(f1)^2}{2} + 0 = 0 +mgh

\frac{v(f1)^2}{2g} = h

h= \frac{(-2.56)^2}{9.8\times 3} =0.33\ m

The linear momentum is conserved before and after this perfectly elastic collision.

So for part a we have the speed =7.668\ ms^-1 for part b we have their common speed =2.56\ ms^-1 and for part c we have the rebound height =0.33\ m.

3 0
3 years ago
Sandstone is a sedimentary rock. Which two processes cause sand particles to form sandstone?
yuradex [85]

Answer:

Compaction and cementation

Explanation:

Cementation: As ions are deposited by fluids to form a compound that hardens loose sedimentary rocks.

Compaction: As the density of sedimentary rocks on edge of them are forced together through sediments.

6 0
3 years ago
Read 2 more answers
Other questions:
  • A laser beam is incident on a plate of glass that is 2.8 cm thick. The glass has an index of refraction of 1.6 and the angle of
    10·1 answer
  • A ball is thrown straight up with an initial velocity of 6.4 m/s. It travels for 0.64 seconds, and has a change of position of 2
    7·1 answer
  • If we increase the force applied to an object and all other factors remain the same that amount of work will
    5·2 answers
  • Gauss's law is usualy written as :
    13·1 answer
  • How can you use the graph of velocity versus time to estimate the acceleration of the ball?
    11·2 answers
  • You can see your image in a shiny, flat surface because the light waves are bouncing off the surface back at you. This is an exa
    15·2 answers
  • In physics, for a given object, work divided by distance will equal
    9·1 answer
  • Un coche que lleva una velocidad constante de 90 km/hora durante 2 horas ¿Cuánto espacio recorre?Si encuentra un obstáculo en la
    14·1 answer
  • Determina la velocidad de un avión que recorre 459 km en 67 min
    8·1 answer
  • A heat engine extracts 42. 53 kj from the hot reservior and exhausts 17. 69 kj into the cold reservior. what is the work done?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!