Answer:
it will be B
Step-by-step explanation:
PLS GIVE MARK ME AS BRAINLESS
<span>There are several possible events that lead to the eighth mouse tested being the second mouse poisoned. There must be only a single mouse poisoned before the eighth is tested, but this first poisoning could occur with the first, second, third, fourth, fifth, sixth, or seventh mouse. Thus there are seven events that describe the scenario we are concerned with. With each event, we want two particular mice to become diseased (1/6 chance) and the remaining six mice to remain undiseased (5/6 chance). Thus, for each of the seven events, the probability of this event occurring among all events is (1/6)^2(5/6)^6. Since there are seven of these events which are mutually exclusive, we sum the probabilities: our desired probability is 7(1/6)^2(5/6)^6 = (7*5^6)/(6^8).</span>
Let

be the random variable indicating whether the elevator does not stop at floor

, with

Let

be the random variable representing the number of floors at which the elevator does not stop. Then

We want to find

. By definition,
![\mathrm{Var}(Y)=\mathbb E[(Y-\mathbb E[Y])^2]=\mathbb E[Y^2]-\mathbb E[Y]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%28Y%29%3D%5Cmathbb%20E%5B%28Y-%5Cmathbb%20E%5BY%5D%29%5E2%5D%3D%5Cmathbb%20E%5BY%5E2%5D-%5Cmathbb%20E%5BY%5D%5E2)
As stated in the question, there is a

probability that any one person will get off at floor

(here,

refers to any of the

total floors, not just the top floor). Then the probability that a person will not get off at floor

is

. There are

people in the elevator, so the probability that not a single one gets off at floor

is

.
So,

which means
![\mathbb E[Y]=\mathbb E\left[\displaystyle\sum_{i=1}^nX_i\right]=\displaystyle\sum_{i=1}^n\mathbb E[X_i]=\sum_{i=1}^n\left(1\cdot\left(1-\dfrac1n\right)^m+0\cdot\left(1-\left(1-\dfrac1n\right)^m\right)](https://tex.z-dn.net/?f=%5Cmathbb%20E%5BY%5D%3D%5Cmathbb%20E%5Cleft%5B%5Cdisplaystyle%5Csum_%7Bi%3D1%7D%5EnX_i%5Cright%5D%3D%5Cdisplaystyle%5Csum_%7Bi%3D1%7D%5En%5Cmathbb%20E%5BX_i%5D%3D%5Csum_%7Bi%3D1%7D%5En%5Cleft%281%5Ccdot%5Cleft%281-%5Cdfrac1n%5Cright%29%5Em%2B0%5Ccdot%5Cleft%281-%5Cleft%281-%5Cdfrac1n%5Cright%29%5Em%5Cright%29)
![\implies\mathbb E[Y]=n\left(1-\dfrac1n\right)^m](https://tex.z-dn.net/?f=%5Cimplies%5Cmathbb%20E%5BY%5D%3Dn%5Cleft%281-%5Cdfrac1n%5Cright%29%5Em)
and
![\mathbb E[Y^2]=\mathbb E\left[\left(\displaystyle\sum_{i=1}^n{X_i}\right)^2\right]=\mathbb E\left[\displaystyle\sum_{i=1}^n{X_i}^2+2\sum_{1\le i](https://tex.z-dn.net/?f=%5Cmathbb%20E%5BY%5E2%5D%3D%5Cmathbb%20E%5Cleft%5B%5Cleft%28%5Cdisplaystyle%5Csum_%7Bi%3D1%7D%5En%7BX_i%7D%5Cright%29%5E2%5Cright%5D%3D%5Cmathbb%20E%5Cleft%5B%5Cdisplaystyle%5Csum_%7Bi%3D1%7D%5En%7BX_i%7D%5E2%2B2%5Csum_%7B1%5Cle%20i%3Cj%7DX_iX_j%5Cright%5D%3D%5Cdisplaystyle%5Csum_%7Bi%3D1%7D%5En%5Cmathbb%20E%5B%7BX_i%7D%5E2%5D%2B2%5Csum_%7B1%5Cle%20i%3Cj%7D%5Cmathbb%20E%5BX_iX_j%5D)
Computing
![\mathbb E[{X_i}^2]](https://tex.z-dn.net/?f=%5Cmathbb%20E%5B%7BX_i%7D%5E2%5D)
is trivial since it's the same as
![\mathbb E[X_i]](https://tex.z-dn.net/?f=%5Cmathbb%20E%5BX_i%5D)
. (Do you see why?)
Next, we want to find the expected value of the following random variable, when

:

If

, we don't care; when we compute
![\mathbb E[X_iX_j]](https://tex.z-dn.net/?f=%5Cmathbb%20E%5BX_iX_j%5D)
, the contributing terms will vanish. We only want to see what happens when both floors are not visited.

![\implies\mathbb E[X_iX_j]=\left(1-\dfrac2n\right)^m](https://tex.z-dn.net/?f=%5Cimplies%5Cmathbb%20E%5BX_iX_j%5D%3D%5Cleft%281-%5Cdfrac2n%5Cright%29%5Em)

where we multiply by

because that's how many ways there are of choosing indices

for

such that

.
So,
7 x > 4 x + 100
7 x - 4 x > 100
3 x > 100
x > 100 : 3
x > 33.33
Answer: they have to sell 34 pizzas to make a profit.
Answer:
2.08 x 10^11
Step-by-step explanation:
To put a number into scientific notation you move the decimal to the spot right after the first digit. To figure out what the power is you count how many digits you moved it past in order to get to the spot you want it (right after the first digit; in this case the 2)
So in this case you would move the decimal from the end of the number backwards past 9 zeros, the 8, and another zero, which is a total of 11 digits.
From there you take the number with the new decimal place and multiply by 10 to the power of the number you counted earlier, which for this example is 11
So the final answer is 2.08 x 10^11