The first opiton is the answer A)<span>Rahul’s weight
</span>
Answer: The correct answer is "Number of rope segments supporting the load".
Explanation:
Mechanical advantage: It is defined as the ratio of the force produced by a machine to the force applied on the machine. The ideal mechanical advantage of a machines is mechanical advantage in the absence of friction.
The ideal mechanical advantage of a pulley system is equal to the number of rope segments which is supporting the load. More the rope segments, It is more helpful to do the lifting the work.
It means that less force is needed for this task to complete.
Therefore, the correct option is (C).
Let say for every 5 s of time interval the speed will remain constant
so it is given as
v(mi/h) 16 21 23 26 33 30 28
now we have to convert the speed into ft/s as it is given that 1 mi/h = 5280/3600 ft/s
so here we will have
v(ft/s) 23.5 30.8 33.73 38.13 48.4 44 41.1
now for each interval of 5 s we will have to find the distance cover for above interval of time



so here it will cover 1298.1 ft distance in 30 s interval of time
Answer:

Explanation:
Hello.
In this case, since the force is defined in terms of the mass and acceleration by:

We can easily compute the mass by solving for it:

Whereas the force is 182 N (kg*m/s²) and the acceleration is 13 m/s², therefore, we obtain:

Best regards.
Force acting during collision is internal so momentum is conserve
so (initial momentum = final momentum) in both directions
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1150 kg and was approaching at 5.00 m/s due south. The second car has a mass of 750 kg and was approaching at 25.0 m/s due west.
Let Vx is and Vy are final velocities of car in +x and +y direction respectively.
initial momentum in +ve x (east) direction = final momentum in +ve x direction (east)
- 750*25 + 1150*0 = (750+1150)
Vx
initial momentum in +ve y (north) direction = final momentum in +ve y direction (north)
750*0 - 1150*5 = (750+1150)
Vy
from here you can calculate Vx and Vy
so final velocity V is
<span>V=<span>(√</span><span>V2x</span>+<span>V2y</span>)
</span>
and angle make from +ve x axis is
<span>θ=<span>tan<span>−1</span></span>(<span><span>Vy</span><span>Vx</span></span>)
</span><span>
kinetic energy loss in the collision = final KE - initial KE</span>