Answer:
(a) 
(b) 
(c) 
Explanation:
(a) According to Newton's second law, the acceleration of a body is directly proportional to the force exerted on it and inversely proportional to it's mass.

(b) According to Newton's third law, the force that the sled exerts on the girl is equal in magnitude but opposite in the direction of the force that the girl exerts on the sled:

(c) Using the kinematics equation:

For the girl, we have
and
. So:

For the sled, we have
. So:

When they meet, the final positions are the same. So, equaling (1) and (2) and solving for t:

Now, we solve (1) for 

Answer:
0.976 c
Explanation:
= velocity of object 1 relative to earth = 0.80 c
= velocity of object 2 relative to object 1 = 0.80 c
= velocity of object 2 relative to earth
Velocity of object 2 relative to earth is given as


= 0.976 c
Answer:Theoretical Discussion
The diffraction of classical waves refers to the phenomenon wherein the waves encounter an obstacle that fragments the wave into components that interfere with one another. Interference simply means that the wave fronts add together to make a new wave which can be significantly different than the original wave. For example, a pair of sine waves having the same amplitude, but being 180◦ out of phase will sum to zero, since everywhere one is positive, the other is negative by an equal amount.
Answer:
(a): The frequency received by the observers is f'= 138,062.28 Hz.
(b): When the plane flies directly away from them, they receive a frequency of f'= 1772.46 Hz.
Explanation:
Vf= 333.33 m/s
Vo= 0 m/s
V= 342 m/s
f= 3500 Hz
(a) f' = f * ( V / (V - Vf) )
f'= 138062.28 Hz
(b) f'= f* ( V / (V - (- Vf) )
f'= 1772.46 Hz
Answer:
D.physical model
Explanation:
it is the evolution of butterfly