Energy, mass, and the speed of light squared.
(E, M, and C^2 respectively).
Hope this helped! :)
For the given molecule, we are asked to give-
- The electron configuration of an isolated B atom
- The electron configuration of an isolated F atom
- Hybrid orbitals should be constructed on the B atom to make the B–F bonds in Boron tri flouride
- valence orbitals, if any, remain unhybridized on the B atom.
- The electron configuration of an isolated B atom:
as atomic number of B is 5
electronic configuration will be [He] 2s² 2p¹
- The electron configuration of an isolated F atom:
as atomic number of F is 9
electronic configuration will be [He] 2s² 2p5
- Hybrid orbitals should be constructed on the B atom to make the B–F bonds in Boron tri flouride will be sp2.
as the one s and two of p orbital from the valance shell will hybridised to make 3 hybrid orbital of B resulting in 3 B-F bonds.
- valence orbitals, if any, remain unhybridized on the B atom will be 1
To know more about hybrisisation:
brainly.com/question/23038117
#SPJ4
H2O means water, which is made of two hydrogen and one oxygen atoms.
Oxygen is a gas that your body needs to function. Oxygen comes from the air.
Answer:
Explanation:
A solar collector is a device that absords Sun's heat energy to heat air or water. It is majorly used for heating purpose, and do not generate electricity directly.
The flow tubes and collector plate are black in color so as to increase the intensity of heat generated by the collector. A black body is a good absorber of heat, it absorbs most heat directed to the collector. Also, a black body is a good radiator of heat, the heat absorbed is rediated to the appropriate channels for the heating of water or air molecules. The black color increases the efficeincy and percentage of solar energy absorbed by the collector.
If a reflective color is used (e.g white), major percentage of the incident heat would be reflected. This would decrease the efficiency of the solar collector.
Explanation:
The question pretty much requires us to find the amount of moles of each compounds based on the number of moles of O given.
H2SO4
1 mol of H2SO4 contains 4 mol of O
x mol of H2SO4 would contain 3.10 mol of O
x = 3.10 * 1 / 4 = 0.775 mol of H2SO4
C2H4O2
1 mol of C2H4O2 contains 2 mol of O
x mol of C2H4O2 would contain 3.10 mol of O
x = 3.10 * 1 / 2 = 1.55 mol of C2H4O2
NaOH
1 mol of NaOH contains 1 mol of O
x mol of NaOH would contain 3.10 mol of O
x = 3.10 * 1 / 1 = 3.10 mol of NaOH