Answer:
• One mole of oxygen is equivalent to 16 grams.
→ But at STP, 22.4 dm³ are occupied by 1 mole.

Hope this helps :) remember your conversions and just practice it's fairly easy:)
M(P)=3.72 g
M(P)=31 g/mol
m(Cl)=21.28 g
M(Cl)=35.5 g/mol
n(P)=m(P)/M(P)
n(P)=3.72/31=0.12 mol
n(Cl)=m(Cl)/M(Cl)
n(Cl)=21.28/35.5=0.60 mol
P : Cl = 0.12 : 0.60 = 1 : 5
PCl₅ - is the empirical formula
Answer:
0.189 g.
Explanation:
- This problem is an application on <em>Henry's law.</em>
- Henry's law states that the solubility of a gas in a liquid is directly proportional to its partial pressure of the gas above the liquid.
- Solubility of the gas ∝ partial pressure
- If we have different solubility at different pressures, we can express Henry's law as:
<em>S₁/P₁ = S₂/P₂,</em>
S₁ = 0.0106/0.792 = 0.0134 g/L and P₁ = 0.321 atm
S₂ = ??? g/L and P₂ = 5.73 atm
- So, The solubility of the gas at 5.73 atm (S₂) = S₁.P₂/P₁ = (0.0134 g/L x 5.73 atm) / (0.321 atm) = 0.239 g/L.
<em>The quantity in (g) = S₂ x V = (0.239 g/L)(0.792 L) = 0.189 g.</em>
<em></em>
An increase in temperature will increase the average kinetic energy of the molecules. As the particles move faster, they will likely hit the edge of the container more often.