Answer:
753.98 cubic cm.
Step-by-step explanation:
We have been given that from right circular cylinder with height 10 cm and radius of base 6 cm, a right circular cone of the same height and base is removed.
To find the area of remaining solid we will subtract volume of cone from volume of cylinder.
![\text{Volume of remaining solid}=\text{Volume of cylinder- Volume of cone}](https://tex.z-dn.net/?f=%5Ctext%7BVolume%20of%20remaining%20solid%7D%3D%5Ctext%7BVolume%20of%20cylinder-%20Volume%20of%20cone%7D)
![\text{Volume of remaining solid}=\pi r^{2} h- \frac{1}{3}\pi r^{2}h](https://tex.z-dn.net/?f=%5Ctext%7BVolume%20of%20remaining%20solid%7D%3D%5Cpi%20r%5E%7B2%7D%20h-%20%5Cfrac%7B1%7D%7B3%7D%5Cpi%20r%5E%7B2%7Dh)
![\text{Volume of remaining solid}=\frac{3}{3}\pi r^{2} h- \frac{1}{3}\pi r^{2}h](https://tex.z-dn.net/?f=%5Ctext%7BVolume%20of%20remaining%20solid%7D%3D%5Cfrac%7B3%7D%7B3%7D%5Cpi%20r%5E%7B2%7D%20h-%20%5Cfrac%7B1%7D%7B3%7D%5Cpi%20r%5E%7B2%7Dh)
![\text{Volume of remaining solid}=\frac{2}{3}\pi r^{2} h](https://tex.z-dn.net/?f=%5Ctext%7BVolume%20of%20remaining%20solid%7D%3D%5Cfrac%7B2%7D%7B3%7D%5Cpi%20r%5E%7B2%7D%20h)
Upon substituting our given values in the formula we will get,
![\text{Volume of remaining solid}=\frac{2}{3}\pi*6^{2}*10](https://tex.z-dn.net/?f=%5Ctext%7BVolume%20of%20remaining%20solid%7D%3D%5Cfrac%7B2%7D%7B3%7D%5Cpi%2A6%5E%7B2%7D%2A10)
![\text{Volume of remaining solid}=\frac{2}{3}\pi*36*10](https://tex.z-dn.net/?f=%5Ctext%7BVolume%20of%20remaining%20solid%7D%3D%5Cfrac%7B2%7D%7B3%7D%5Cpi%2A36%2A10)
![\text{Volume of remaining solid}=2*\pi*12*10](https://tex.z-dn.net/?f=%5Ctext%7BVolume%20of%20remaining%20solid%7D%3D2%2A%5Cpi%2A12%2A10)
![\text{Volume of remaining solid}=240\pi](https://tex.z-dn.net/?f=%5Ctext%7BVolume%20of%20remaining%20solid%7D%3D240%5Cpi)
![\text{Volume of remaining solid}=753.9822368615503772\approx 753.98](https://tex.z-dn.net/?f=%5Ctext%7BVolume%20of%20remaining%20solid%7D%3D753.9822368615503772%5Capprox%20753.98)
Therefore, the volume of remaining solid is 753.98 cubic cm.