Answer:
The pH of the sweater containing Hydrogen ion concentration
is
<u>8</u>
<u></u>
Explanation:
pH = It is the negative logarithm of activity (concentration) of hydrogen ions.
pH = -log([H+])
Now, In the question the concentration of [H+] ions is :
![[H^{+}]=1\times 10^{-8}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%3D1%5Ctimes%2010%5E%7B-8%7D)

use the relation:


pH = 8
Note : <em><u> 1 times 10 to the power of 8 must be" 1 times 10 to the power of -8"</u></em>
If the concentration is
![[H^{+}]=1\times 10^{8}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%3D1%5Ctimes%2010%5E%7B8%7D)
Then pH = -8 , which is not possible . So in that case the pH calculation is by other method
Answer:
See explanation and images attached
Explanation:
a) In the mechanism for the acid catalysed esterification of propanoic acid using ethanol, we can see that the first step is the protonation of the acid followed by nucleophillic attack of the alcohol. Loss of water and consequent deprotonation regenerates the acid catalyst. We can see the fate of the 18O labelled ethanol in the mechanism shown.
b) In the second mechanism, an unnamed ester is hydrolysed using an acid catalyst. The attack of the acid and subsequent nucleophillic attack of water labelled with 18O leads to the incorporation of this 18O into the product acid as shown in the mechanism attached to this answer.
Hey there!:
Write the molecular equation for the reaction of MgSO4 with Pb(NO3)2 :
MgSO4(aq) + Pb(NO3)2(aq) ---> Mg(NO3)2(aq) + PbSO4(s)
Write the total ionic equation for the reaction :
Mg²⁺ (aq) + SO₄⁻² (aq) + Pb²⁺ (aq) + 2 NO₃⁻¹ (aq) + PbSO₄(s)
Therefore:
Cancel the spectator ions on both sides:
Pb²⁺ (aq) + SO₄⁻² (aq) ---> PbSO4(s)
Hope that helps!
<h2>Answer: C) 1s²2s²2p⁶</h2>
<h3>Explanation:</h3>
A noble gas has 8 electrons between the p and s orbitals of the outer shell. Helium is the exception because it only has two electrons.
<h3> ∴ 1s²2s²2p⁶ is the noble gas (neon)</h3>
Answer:
c = 0.0432moldm ^−3
Explanation:
The first step would be to find the molar ratio in the reaction. Now generally, one can simplify strong acid-strong base reaction by saying:
Acid+Base ->Salt+ Water