Answer:
6*10^-3
Hope it helps
Procedure in the attached file
Answer:
After 1326s, the concentration of pyruvic acid fall to 1/64 of its initial concentration.
Explanation:
The first order kinetics reaction is:
ln [A] = ln [A]₀ - kt
<em>Where [A] is concentration after t time, [A]₀ is intial concentration and k is reaction constant.</em>
To convert half-life to k you must use:
t(1/2) = ln 2 / K
221s = ln 2 / K
K = ln 2 / 221s
<h3>K = 3.1364x10⁻³s⁻¹</h3>
If [A] = 1/64, [A]₀ = 1:
ln [A] = ln [A]₀ - kt
ln (1/64) = ln 1 - 3.1364x10⁻³t
4.1588 = 3.1364x10⁻³s⁻¹t
1326s = t
<h3>After 1326s, the concentration of pyruvic acid fall to 1/64 of its initial concentration.</h3>
<em />
Answer:
The nucleus, that dense central core of the atom, contains both protons and neutrons.
So to answer your question yes it does contain all of the protons in the atom.
* Hopefully this helps:) Mark me the brainliest:)!
Answer:
The reaction quotient (Q) before the reaction is 0.32
Explanation:
Being the reaction:
aA + bB ⇔ cC + dD
![Q=\frac{[C]^{c} *[D]^{d} }{[A]^{a}*[B]^{b} }](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BC%5D%5E%7Bc%7D%20%2A%5BD%5D%5E%7Bd%7D%20%7D%7B%5BA%5D%5E%7Ba%7D%2A%5BB%5D%5E%7Bb%7D%20%20%7D)
where Q is the so-called reaction quotient and the concentrations expressed in it are not those of the equilibrium but those of the different reagents and products at a certain instant of the reaction.
The concentration will be calculated by:

You know the reaction:
PCl₅ (g) ⇌ PCl₃(g) + Cl₂(g).
So:
![Q=\frac{[PCl_{3} ] *[Cl_{2} ] }{[PCl_{5} ]}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BPCl_%7B3%7D%20%5D%20%2A%5BCl_%7B2%7D%20%5D%20%7D%7B%5BPCl_%7B5%7D%20%5D%7D)
The concentrations are:
- [PCl₃]=

- [Cl₂]=

- [PCl₅]=

Replacing:

Solving:
Q= 0.32
<u><em>The reaction quotient (Q) before the reaction is 0.32</em></u>