Answer:
A) G = m³/kg.s²
B) E = kg.m²/s²
Explanation:
A)
The given relation is:
F = Gm₁m₂/r²
where, the units of all variables are:
F = Force = kg.m/s²
m₁ = m₂ = mass = kg
r = distance = m
G = Gravitational Constant = ?
Therefore,
kg.m/s² = G(kg)(kg)/m²
(kg.m/s²)(m²/kg²) = G
<u>G = m³/kg.s²</u>
<u></u>
B)
The given equation is:
E = mc²
where, the units of all variables are:
m = mass = kg
c = speed = m/s
E = Energy = ?
Therefore,
E = (kg)(m/s)²
<u>E = kg.m²/s²</u>
This is the correct answer, which is not present in any option.
Answer:
If an object moves along a straight line, the distance traveled can be represented by a distance-time graph. In a distance-time graph, the gradient of the line is equal to the speed of the object. The greater the gradient (and the steeper the line) the faster the object is moving.
Explanation:
Answer:
a. 37.75°
b. 6.21 m
Explanation:
a. The horizontal force acting on a pendulum bob is given as:
F = mgsinθ
where m = mass of bob
g = acceleration due to gravity
θ = angle string makes with the vertical or angle of displacement
Making θ subject of formula, we have:
θ = 
θ = 
θ = 37.75°
The maximum angle of displacement is 37.75°
b. Period of a pendulum is given as:

where L = length of string
Therefore, making L subject of formula:


The string holding the pendulum has to be 6.21 m long.