The bowling ball will require more force to roll because it is more massive.
Answer:
This means that the kinetic energy of second object is 48times that of the first object
Explanation:
Kinetic energy is the energy possessed by a body by virtue of its motion e.g motion of an accelerating car. Mathematically,
Kinetic energy = 1/2mv² where;
m is the mass of the object
v is the velocity of the object
If Object 1 of mass m moves with speed v in the positive direction, its kinetic energy will be expressed as;
K1 = 1/2mv²
For Object 2 of mass 3m moving with speed 4v in the negative x-direction, its kinetic energy can be expressed as;
K2 = 1/2(3m)(4v)²
K2 = 1/2(3m)(16v²)
K2 = (3m)(8v²)
K2 = 24mv²
To compare the kinetic energy of both bodies, we will take the ratio of K2:K1 to have;
K2/K1 = 24mv²/(1/2)mv²
K2/K1 = 24/(1/2)
K2/K1 = 48
K2 = 48K1
This means that the kinetic energy of second object is 48times that of the first object and moving in the negative x direction since the body of mass 3m initially moves in the negative x direction.
Elastic
Explanation is that it is force which is snapping back
Explanation:
1. Force applied on an object is given by :
F = W = mg
(a) A 160 lb human being, F = 160 lb
g = acceleration due to gravity, g = 32 ft/s²


m = 5 kg
(b) A 1.9 lb cockatoo, F = 1.9 lb


m = 0.059 kg
2. (a) A 2300 kg rhinoceros, m = 2300 kg

(b) A 22 g song sparrow, m = 22 g = 0.022 kg

Hence, this is the required solution.