There are different kinds of conductors, most notably electrical and thermal conductors. But they are often inclusive of each other (electrical conductors are typically good thermal conductors).
A conductor transmits something through its body with high efficiency while an insulator does not transmit very well. In the case of electricity, a conductor transmits electrical energy between two points while an insulator blocks the flow of electricity.
Two examples of conductors are copper and silver. Two examples of insulators are wood and styrofoam.
A wave period is the time it takes to complete one cycle
I hope that's help:0
Answer:
D. infinitely extended in all directions
Explanation:
A semi infinite solid is infinitely extended in every direction. It has a single surface and can extend when heat is applied.
The body of a semi infinite solid is idealised, that is, when there is heat present, it expands in all directions to infinity. It can be used for a thick wall because its shape can be changed when subjected to different levels of heat near its surface.
It is also expands as heat is applied because its thickness is negligible.
This idealized body is used for earth, thick wall, steel piece of any shaped quenched rapidly etc indetermining variation of temperature near its surface & other surface being too far to have any impact on the region in short period of time since heat doesn’t have sufficient time to penetrate deep into body thus thickness can be neglected
KE = 1/2 * m * v^2
KE = 1/2 * 0.135 * 40^2
KE = 1/2 * 0.135 * 1600
KE = 108 J
Answer:
speed of electrons = 3.25 ×
m/s
acceleration in term g is 3.9 ×
g.
radius of circular orbit is 2.76 ×
m
Explanation:
given data
voltage = 3 kV
magnetic field = 0.66 T
solution
law of conservation of energy
PE = KE
qV = 0.5 × m × v²
v =
v =
v = 3.25 ×
m/s
and
magnetic force on particle movie in magnetic field
F = Bqv
ma = Bqv
a =
a =
a = 3.82 ×
m/s²
and acceleration in term g
a =
a = 3.9 ×
g
acceleration in term g is 3.9 ×
g.
and
electron moving in circular orbit has centripetal force
F =
Bqv =
r =
r =
r = 2.76 ×
m
radius of circular orbit is 2.76 ×
m