More mass and less difference
There are missing data in the text of the problem (found them on internet):
- speed of the car at the top of the hill:

- radius of the hill:

Solution:
(a) The car is moving by circular motion. There are two forces acting on the car: the weight of the car

(downwards) and the normal force N exerted by the road (upwards). The resultant of these two forces is equal to the centripetal force,

, so we can write:

(1)
By rearranging the equation and substituting the numbers, we find N:

(b) The problem is exactly identical to step (a), but this time we have to use the mass of the driver instead of the mass of the car. Therefore, we find:

(c) To find the car speed at which the normal force is zero, we can just require N=0 in eq.(1). and the equation becomes:

from which we find
Electric Current:
Electric current is the flow of charge through a given circuit per unit time. Electric current is one of the components needed to calculate the electric power that a device needs to operate and do work. Electric current is measured in amperes (A), which is equal to:
1A = 1 C/ s
Recall that the coulomb (C) is the unit for charge while the second (s) is the unit for time
Given: I = 3.5
A is the current
Δt =30 s is the time interval
A =ΔQ/ΔT
Net charge = 100C
Electricity is produced when an electric current runs through a circuit.
How does electric current work?
A current of electricity is a steady flow of electrons. When electrons move from one place to another, round a circuit, they carry electrical energy from place to place like marching ants carrying leaves. Instead of carrying leaves, electrons carry a tiny amount of electric charge.
Learn more about Electric current :
brainly.com/question/27003377
#SPJ4
Answer:
sned me short notes of Physics of all branches (post graduation level) thanks
+923466867221
Explanation: