I believe they are converted to energy
<span>A colloid can be detected by using the Tyndall effect. The correct option among all the options that are given in the question is the second option. The other choices are incorrect and can be easily neglected. I hope that this is the answer that you were looking for and the answer has actually come to your desired help.</span>
Answer:Carbon dioxide
Explanation:Carbon dioxide molecules are heavier than air. Because of this, they push the oxygen and other molecules in the air out of the way as they sink down over the flame and candle. When oxygen is pushed away from the wick, it can’t react with the wax anymore. This makes the flame go out.
Next time you blow out a candle, think about what your breath is doing. Why do you think blowing on a candle flame makes it go out?
Nonmetallic binds are commonly
When 67 g of water is heated from its melting point to its boiling point, it takes 28006 J of heat.
<h2>Relationship between heat production and temperature change</h2>
- A way to numerically relate the quantity of thermal energy acquired (or lost) by a sample of any substance to that sample's mass and the temperature change that results from that is provided by specific heat capacity.
The following formula is frequently used to describe the connection between these four values.
q = msΔT
where, q = the amount of heat emitted or absorbed by the thing
m = the object's mass = 67 gm
s = a specific heat capacity of the substance = 4.18 J/gC
ΔT = the resultant change in the object's temperature = 373.15 -273.15K= 100 k
q = 67 * 4.18 * 100 J
⇒q = 28006 J
Therefore it is concluded that 67 g of water takes 28006 J of heat from its melting point to reach its boiling point.
Learn more about thermal energy here:
brainly.com/question/3022807
#SPJ1