Answer:
The correct appropriate will be Option 1 (Acid anhydrides are less stable than esters so the equilibrium favors the ester product.)
Explanation:
- Acid anhydride, instead of just a carboxyl group, is typically favored for esterification. The predominant theory would be that Anhydride acid is somewhat more volatile than acid. This is favored equilibrium changes more toward the right of the whole ester structure.
- Extremely responsive than carboxylic acid become acid anhydride as well as acyl chloride. Thus, for esterification, individuals were most favored.
The other options offered are not relevant to something like the scenario presented. So, the solution here is just the right one.
Final volume is 400 mL
<span>The moles in MgSO4 is 0.00788 </span><span>mL
</span>
The new concentration is 0.197
Answer:
B. The rate constant is the reaction rate divided by the concentration
terms.
Explanation:
The rate constant can be determined from the rate law because it is the reaction rate divided by the concentration terms. I hope I could help! :)
Answer:
At one atmosphere and twenty-five degrees Celsius, could you turn it into a liquid by cooling it down? Um, and the key here is that the triple point eyes that minus fifty six point six degrees Celsius and it's at five point eleven ATMs. So at one atmospheric pressure, there's no way that you're ever going to reach the liquid days. So the first part of this question is the answer The answer to the first part of a question is no. How could you instead make the liquid at twenty-five degrees Celsius? Well, the critical point is at thirty-one point one degrees Celsius. So you know, if you're twenty-five, if you increase the pressure instead, you will briefly by it, be able to form a liquid. And if you continue Teo, you know, increase the pressure eventually form a salad, so increasing the pressure is the second part. If you increase the pressure of co two thirty-seven degrees Celsius, will you ever liquefy? No. Because then, if you're above thirty-one point one degrees Celsius in temperature. You'LL never be able to actually form the liquid. Instead, you'LL only is able Teo obtain supercritical co too, which is really cool thing. You know, they used supercritical sio tu tio decaffeinated coffee without, you know, adding a solvent that you'LL be able to taste, which is really cool. But no, you can't liquefy so two above thirty-one degrees Celsius or below five-point eleven atmospheric pressures anyway, that's how I answer this question. Hope this helped :)
They loose a valence electron