Question seems to be missing. Found it on google:
a) How long is the ski jumper airborne?
b) Where does the ski jumper land on the incline?
a) 4.15 s
We start by noticing that:
- The horizontal motion of the skier is a uniform motion, with constant velocity

and the distance covered along the horizontal direction in a time t is

- The vertical motion of the skier is a uniformly accelerated motion, with initial velocity
and constant acceleration
(where we take the downward direction as positive direction). Therefore, the vertical distance covered in a time t is

The time t at which the skier lands is the time at which the skier reaches the incline, whose slope is
below the horizontal
This happens when:

Substituting and solving for t, we find:

b) 143.6 m
Here we want to find the distance covered along the slope of the incline, so we need to find the horizontal and vertical components of the displacement first:


The distance covered along the slope is just the magnitude of the resultant displacement, so we can use Pythagorean's theorem:

Answer:
<h3> different crystals from 6 to the point of the day I am not sure if you are aware of this but I am not sure if you are aware of this but I am not sure if you have any idea of how 3 is going to be able or not 2 3 or even if you have a good day or two to get to know you a 3 of a good place To Go for your own business or business 5 52 you are a great 49,494 548 4.</h3>
Well since we're doing the Lewis dot diagram do you know which element on the table that it is?
The energy required to start a reaction IS called the activation energy. TRUE