Answer:
<h2>154.73N</h2>
Explanation:
The question is incomplete. Here is the complete question.
Using the strap at an angle of 31° above the horizontal, a Grade 12 Physics student, tired from studying, is dragging his 15 kg school bag across the floor at a constant velocity. (a) If the force of tension in the strap is 51 N, what is the normal force.
Check the diagram related to the question in the attachment below for better understanding.
The normal force is the reaction acting perpendicular to the force of tension in the strap and opposite the weight of the bag. They are the forces acting along the vertical.
The normal force N will be the sum of the force of tension acting along the vertical (Ty) and the weight of the bag (W).
Ty = 15sin31°
Ty = 7.73N
W = mass * acceleration due to gravity
W = 15.0*9.8
W = 147N
The normal force is therefore expressed as;
N = Ty + W
N = 7.73 + 147
N = 154.73N
Answer:
it depends on the relative masses of the objects.
Explanation:
Answer:
a) 2.5 m/s²
b) 6.12 m/s
Explanation:
Tension of rope = T = 356N
Weight of material = W = 478 N
Distance from the ground = s = 7.5 m
Acceleration due to gravity = g = 9.81 m/s²
Mass of material = m = 478/9.81 = 48.72
Final velocity before the bundle hits the ground = v
Initial velocity = u = 0
Acceleration experienced by the material when being lowered = a
a) W-T = ma
⇒478-356 = 48.72×a

⇒a = 2.5 m/s²
∴ Acceleration achieved by the material is 2.5 m/s²
b) v²-u² = 2as
⇒v²-0 = 2×2.5×7.5
⇒v² = 37.5
⇒v = 6.12 m/s
∴ Velocity of the material before hitting the ground is 6.12 m/s
Answer:
D
Explanation:
I’m pretty sure it’s correct but I don’t really know. Just trying to pass science
Answer:
E = 12640.78 N/C
Explanation:
In order to calculate the electric field you can use the Gaussian theorem.
Thus, you have:

ФE: electric flux trough the Gaussian surface
Q: net charge inside the Gaussian surface
εo: dielectric permittivity of vacuum = 8.85*10^-12 C^2/Nm^2
If you take the Gaussian surface as a spherical surface, with radius r, the electric field is parallel to the surface anywhere. Then, you have:

r can be taken as the distance in which you want to calculate the electric field, that is, 0.795m
Next, you replace the values of the parameters in the last expression, by taking into account that the net charge inside the Gaussian surface is:

Finally, you obtain for E:

hence, the electric field at 0.795m from the center of the spherical shell is 12640.78 N/C