Answer:
Z(-0.2, 2.2).
Step-by-step explanation:
We will use section formula when a point, say P, divides any segment ,say AB, internally in the ratio m:n.
![[x=\frac{mx_2+nx_1}{m+n}, y= \frac{my_2+ny_1}{m+n}]](https://tex.z-dn.net/?f=%5Bx%3D%5Cfrac%7Bmx_2%2Bnx_1%7D%7Bm%2Bn%7D%2C%20y%3D%20%5Cfrac%7Bmy_2%2Bny_1%7D%7Bm%2Bn%7D%5D)
We have been given the points of segment XY as X at (-2,1) and Y at (4,5) and ratio is 3:7.

Upon substituting coordinates of our given points in section formula we will get,
![[x=\frac{(3*4)+(7*-2)}{3+7}, y= \frac{3*5+7*1}{3+7}]](https://tex.z-dn.net/?f=%5Bx%3D%5Cfrac%7B%283%2A4%29%2B%287%2A-2%29%7D%7B3%2B7%7D%2C%20y%3D%20%5Cfrac%7B3%2A5%2B7%2A1%7D%7B3%2B7%7D%5D)
![[x=\frac{12-14}{10}, y= \frac{15+7}{10}]](https://tex.z-dn.net/?f=%5Bx%3D%5Cfrac%7B12-14%7D%7B10%7D%2C%20y%3D%20%5Cfrac%7B15%2B7%7D%7B10%7D%5D)
![[x=\frac{-2}{10}, y= \frac{22}{10}]](https://tex.z-dn.net/?f=%5Bx%3D%5Cfrac%7B-2%7D%7B10%7D%2C%20y%3D%20%5Cfrac%7B22%7D%7B10%7D%5D)
![[x=-0.2, y= 2.2]](https://tex.z-dn.net/?f=%5Bx%3D-0.2%2C%20y%3D%202.2%5D)
Therefore, coordinates of point Z will be (-0.2, 2.2).
1047.84ft² is not covered by the pool.
Find the area of the yard covered by pull using the area of a circle formula (the height is irrelevant in this case). If the diameter of the pool is 24 feet, its radius is 12 (half of the diameter)
A = 3.14r^2
A =3.14(144)
A = 452.16 ft²
Subtract the area of the pool from the area of the yard to get the area of the yard that is not covered by the pool. If the dimensions of the yard are 30ft by 50ft, you multiply them to get the area: 1500ft²
Total yard area: 1,500ft²
Area of yard without pool: 1,500ft² - 452.16ft² = 1047.84ft²
Answer:
15 miles
Step-by-step explanation:
50 + 4x = 80 + 2x
-50 -2x = -50 -2x
2x = 30
x = 15
Answer:
D
Step-by-step explanation
A. there are 6 triangles so not this
B. Only 2 rectangles
C. 6 triangles once again
D. everything matches
Which of the following lists has a mode of 213? / 111, 108, 213, 198, 205/ /212, 215, 213, 211, 220/ /213, 278, 108, 213, 157/ /
Fed [463]
The mode is the most frequent one
The answer is 213, 278 , 108, 213, 157