<u>Answer:</u> The value of equilibrium constant for the net reaction is 11.37
<u>Explanation:</u>
The given chemical equations follows:
<u>Equation 1:</u> ![A+2B\xrightarrow[]{K_1} 2C](https://tex.z-dn.net/?f=A%2B2B%5Cxrightarrow%5B%5D%7BK_1%7D%202C)
<u>Equation 2:</u> ![2C\xrightarrow[]{K_2} D](https://tex.z-dn.net/?f=2C%5Cxrightarrow%5B%5D%7BK_2%7D%20D)
The net equation follows:
![D\xrightarrow[]{K} A+2B](https://tex.z-dn.net/?f=D%5Cxrightarrow%5B%5D%7BK%7D%20A%2B2B)
As, the net reaction is the result of the addition of first equation and the reverse of second equation. So, the equilibrium constant for the net reaction will be the multiplication of first equilibrium constant and the inverse of second equilibrium constant.
The value of equilibrium constant for net reaction is:

We are given:


Putting values in above equation, we get:

Hence, the value of equilibrium constant for the net reaction is 11.37
It’s a covalent is bond where atoms share an electron on the outer most electron shell orbit.
The periods are the rows, and there are 8 of them (I think)
Li + H2O →<span> LiOH + H2
The equation is currently unbalanced, so to balance it out, you have to have the same number of each molecule on each side. It'll look like this:
</span>2Li + 2H2O → <span>2LiOH + H2
</span>
Also, in case you want to identify the phases as well, it'll be like this:
2Li (s) + 2H2O (l) → 2LiOH (aq) + H2 (g)
"s" is solid.
"l" is liquid.
"aq" is aquas.
"g" is gas.
Planets don’t produce their own light. They reflect on the light of the sun in the same way our moon reflects sunlight.