Answer:
See explanation below
Explanation:
The question is incomplete. However, here's the missing part of the question:
<em>"For the following reaction, Kp = 0.455 at 945 °C: </em>
<em>C(s) + 2H2(g) <--> CH4(g). </em>
<em>At equilibrium the partial pressure of H2 is 1.78 atm. What is the equilibrium partial pressure of CH4(g)?"</em>
With these question, and knowing the value of equilibrium of this reaction we can calculate the partial pressure of CH4.
The expression of Kp for this reaction is:
Kp = PpCH4 / (PpH2)²
We know the value of Kp and pressure of hydrogen, so, let's solve for CH4:
PpCH4 = Kp * PpH2²
*: You should note that we don't use Carbon here, because it's solid, and solids and liquids do not contribute in the expression of equilibrium, mainly because their concentration is constant and near to 1.
Now solving for PpCH4:
PpCH4 = 0.455 * (1.78)²
<u><em>PpCH4 = 1.44 atm</em></u>
The answer is False. The formation of the moon did not cause the Paleozoic extinction. The moon formed during the Precambrian era.
It would be the same thing if the Co does not have a number with it because it can’t reduce
Answer:
H₂O
Explanation:
Based electronegativity, water H₂O will have the higher melting point from the given choices. The binding force between hydrogen and oxygen is greater than for the others.
- In group 6, oxygen has the highest electronegativity.
- It pulls the shared electron closer in the bond.
- The high electronegativity between hydrogen and oxygen causes the elevated melting point between the two species.
The correct answer would be A. The symbol Eo would represent the cell potential of an electrolytic cell. This potential is being created by two metals that possess different properties. The energy per charge that is available from the reaction of the metals is the measure of this potential and is related to the equilibrium constant, K.