A, electromagnetic radiation
Answer:
<u>B. the stars of spectral type A and F are considered reasonably to have habitable planets but much less likely to have planets with complex plant - or animal - like life.</u>
Explanation:
The appropriate spectral range for habitable stars is considered to be "late F" or "G", to "mid-K" or even late "A". <em>This corresponds to temperatures of a little more than 7,000 K down to a little less than 4,000 K</em> (6,700 °C to 3,700 °C); the Sun, a G2 star at 5,777 K, is well within these bounds. "Middle-class" stars (late A, late F, G , mid K )of this sort have a number of characteristics considered important to planetary habitability:
• They live at least a few billion years, allowing life a chance to evolve. <em>More luminous main-sequence stars of the "O", "B", and "A" classes usually live less than a billion years and in exceptional cases less than 10 million.</em>
• They emit enough high-frequency ultraviolet radiation to trigger important atmospheric dynamics such as ozone formation, but not so much that ionisation destroys incipient life.
• They emit sufficient radiation at wavelengths conducive to photosynthesis.
• Liquid water may exist on the surface of planets orbiting them at a distance that does not induce tidal locking.
<u><em>Thus , the stars of spectral type A and F are considered reasonably to have habitable planets but much less likely to have planets with complex plant - or animak - like life.</em></u>
Given that : d = 5sin(pi t/4), So, maximum displacement, d = 5*(+1) = 5 Also, maximum displacement, d = 5*(-1) = -5
Answer:
1 micron = 1.00E-6 m is one way
1.00^-6 m is another but is not usually considered scientific notation, but
often convenient to use.
Answer:
mas of water displaced = 41.4 g
Explanation:
Weight in air = True weight = 45 g
Apparent weight = 3.6 g
Apparent weight = True weight - Buoyant force
Buoyant force = 45 g - 3.6 g = 41.4 g
Weight of water displaced = Buoyant force
Weight of water displaced = 41.4 g dyne
mas of water displaced = 41.4 g