The distance an object falls, from rest, in gravity is
D = (1/2) (G) (T²)
'T' is the number seconds it falls.
In this problem,
0.92 meter = (1/2) (9.8) (T²)
Divide each side by 4.9 : 0.92 / 4.9 = T²
Take the square root
of each side: √(0.92/4.9) = T
0.433 sec = T
The horizontal speed doesn't make a bit of difference in
how long it takes to reach the floor. BUT ... if you want to
know how far from the table the pencil lands, you can find
that with the horizontal speed.
The pencil is in the air for 0.433 second.
In that time, it travels
(0.433s) x (1.4 m/s) = 0.606 meter
from the edge of the table.
To find
we need to use vector addition and use the x and y components. First we subtract vector 2 from vector 5 which results in a vector with a length of 3 pointing directly east, then we use the distance formula to find the length of the net force
which gives
. We now have a magnitude but we also need a direction, since vector 4 and vector 5 are perpendicular. Using
where tan^-1(y/x) we get an angle of 53 degrees. The resultant force vector is 5 distance with an angle of 53 degrees north east.
Answer:
C is halved
Explanation:
The frequency and the wavelength of a wave are related by the equation:

where
v is the speed of the wave
f is the frequency
is the wavelength
From the equation above, we see that for a given wave, if the wave is travelling in the same medium (and so, its speed is not changing), then the frequency and the wavelength are inversely proportional to each other.
Therefore, if the frequency doubles, the wavelength will halve in order to keep the speed constant:
