1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erastovalidia [21]
3 years ago
12

What must engineers keep in mind so that their solutions will be appropriate? O abstract knowledge O context O scientists persev

erance​
Engineering
1 answer:
Margaret [11]3 years ago
3 0

Answer: Context

Explanation: It is always very important for an engineer to keep the context of his/her expirament in mind.

You might be interested in
A system consists of N very weakly interacting particles at a temperature T sufficiently high so that classical statistical mech
algol [13]

Answer:

the restoring force is = 3/4NKT

Explanation:

check the attached files for answer.

7 0
3 years ago
A binary geothermal power plant uses geothermal water at 160°C as the heat source. The cycle operates on the simple Rankine cycl
bogdanovich [222]

A binary geothermal power operates on the simple Rankine cycle with isobutane as the working fluid. The isentropic efficiency of the turbine, the net power output, and the thermal efficiency of the cycle are to be determined

Assumptions :

1.  Steady operating conditions exist.

2.  Kinetic and potential energy changes are negligible.

Properties:  The specific heat of geothermal water ( c_{geo}[) is taken to be 4.18 kJ/kg.ºC.  

Analysis (a) We need properties of isobutane, we can obtain the properties from EES.

a. Turbine

PP_{3} = 3.25mPa = (3.25*1000) kPa\\= 3250kPa\\from the EES TABLE\\h_{3} = 761.54 kJ/kg\\s_{3} = 2.5457 kJ/kg\\P_{4} = 410kPa\\\\s_{4} = s_{3} \\h_{4s} = 470.40kJ/kg\\\\T_{4} = 179.5^{0} C\\\\h_{4} = 689.74 kJ/KG\\\\ The  isentropic  efficiency, n_{T} = \frac{h_{3}-h_{4}  }{h_{3}- h_{4s} }

==\frac{761.54-689.74}{761.54-670.40} \\=\frac{71.8}{91.14} \\=0.788

b. Pump

h_{1} = h_{f} @ 410kPa = 273.01kJ/kg\\v_{1} = v_{f} @ 410kPa = 0.001842 m^{3}/kgw_{p,in} =  \frac{v_{1}(P_{2}-P_{1})   }{n_{p} } \\\\= \frac{0.01842(3250-410)}{0.9} \\\\ =5.81kJ/kg\\h_{2} =h_{1} + w_{p,in}\\          = 273.01+5.81\\           = 278.82 kJ/kg\\\\w_{T,out} = m^{.}  (h_{3} -h_{4} )\\=(305.6)(761.54-689.74)\\=305.6(71.8)\\=21,942kW\\\\

W^{.} _ {P,in} = m^{.} (h_{2} -h_{1}) \\=m^{.}  w_{p,in \\=305.6(5.81)\\\\=1,777kW\\W^{.}  _{net} = W^{.} _{T, out} - W^{.}  _{P,in} \\= 21,942-1,777\\=20,166 kW\\\\HEAT EXCHANGER\\\\Q_{in} = m^{.} _{geo} c_{geo} (T_{in-T_{out} } )\\=555.9(4.18)(160-90)\\=162.656kW\\

c. The thermal efficiency of the cycle  n_{th}  =\frac{W^{.} _{net} }{Q^{._{in} } } \\\\= \frac{20,166}{162,656} \\=0.124\\=12.4%

7 0
3 years ago
Read 2 more answers
A lake has a carrying capacity of 10,000 fish. At the current level of fishing, 2,000 fish per year are taken with the catch uni
arlik [135]

Answer:

The population size would be p' = 5000

The yield would be    MaxYield = 2082 \ fishes \ per \ year

Explanation:

So in this problem we are going to be examining the application of a  population dynamics a fishing pond and stock fishing and objective would be to obtain the maximum sustainable yield and and the population of the fish at the obtained maximum sustainable yield,  so basically we would be applying an engineering solution to fishing

 

    So the current  yield which is mathematically represented as

                               \frac{dN}{dt} =   \frac{2000}{1 \ year }

 Where dN is the change in the number of fish

            and dt is the change in time

So in order to obtain the solution we need to obtain the  rate of growth

    For this we would be making use of the growth rate equation which is

                                      r = \frac{[\frac{dN}{dt}] }{N[1-\frac{N}{K} ]}

  Where N is the population of the fish which is given as 4,000 fishes

          and  K is the carrying capacity which is given as 10,000 fishes

             r is the growth rate

        Substituting these values into the equation

                              r = \frac{[\frac{2000}{year}] }{4000[1-\frac{4000}{10,000} ]}  =0.833

The maximum sustainable yield would be dependent on the growth rate an the carrying capacity and this mathematically represented as

                      Max Yield  = \frac{rK}{4} = \frac{(10,000)(0.833)}{4} = 2082 \ fishes \ per \ year

So since the maximum sustainable yield is 2082 then the the population need to be higher than 4,000 so in order to ensure a that this maximum yield the population size denoted by p' would be

                          p' = \frac{K}{2}  = \frac{10,000}{2}  = 5000\ fishes          

7 0
3 years ago
Read 2 more answers
Responding to the campaign of 4 classes, 7A, 7B, 7C, 7D contributed the amount of support proportional to the numbers 8,6;7;5 kn
Zolol [24]

Writing life on my fantasy planet

8 0
2 years ago
For each topic, find the total number of blurts that were analyzed as being related to the topic. Order the result by topic id.
photoshop1234 [79]

Answer:

Explanation: see attachment below

8 0
3 years ago
Other questions:
  • Work-producing devices that operate on reversible processes deliver the most work, and work-consuming devices that operate on re
    6·1 answer
  • ¿Por qué creen que la Ingeniería Metalúrgica es una carrera estratégica para el desarrollo de nuestro país?
    9·1 answer
  • When you see a street with white markings only, what kind of street is it?
    7·1 answer
  • An insulated tank having a total volume of 0.6 m3 is divided into two compartments. Initially one compartment contains 0.4 m3 of
    8·1 answer
  • Consider a Carnot refrigeration cycle executed in a closed system in the saturated liquid-vapor mixture region using 0.96 kg of
    11·1 answer
  • What material property would still cause strain in a strain gauge that is positionedperpendicular to the direction of force if i
    6·1 answer
  • The MOST common injury causing absence from work is
    7·2 answers
  • An astronomer of 65 kg of mass hikes from the beach to the observatory atop the mountain in Mauna Kea, Hawaii (altitude of 4205
    15·1 answer
  • A type of adjustable square that can be used to set, test, and transfer angles is called a
    5·1 answer
  • A 20cm-long rod with a diameter of 0.250 cm is loaded with a 5000 N weight. If the diameter of the bar is 0.490 at this load, de
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!