Answer:
The type of succession is:
Primary succession
Explanation:
This is a type of succession that occurs after a volcanic eruption or earthquake; it involves the breakdown of rocks by lichens to create new, nutrient rich soils.
Primary succession is one of the two types of succession we have. It begins on rock formations, such as volcanoes or mountains, or in a place with no organisms or soil.
Explanation:
This is not so much a mathematical issue as a case study, because the response will inevitably require us to test the special Columbic shuttle disaster scenario. I would suggest that you read this in detail and present the points accordingly. Here I give as many points as I think are relevant.
The failure of a space program is definitely a complex situation, more than a simple binomial distribution. It's definitely not as simple as repeating the flip of a coin. There are several coherent factors and situations that govern the overall coordination and execution of such an event. The problem is, those who are running a project like this are still making a trade off,It is never the case that they sealed the lid on any chance of failure between multiple parameters. You try to do something, but often, as is the case above, the potentially dangerous situation is impossible or uncontrollable. Since the root cause of failure, which is dried out tiles that can not withstand heat and water, it appears that owing to the constant use of the shuttle the head architects have not foreseen this.
Physical movement like running
Answer:
You are eating ramen
Explanation:
It is shrimp flavor, yee yee
Answer: the average velocity decreases
Explanation:
From the provided data we have:
Vessel avg. diameter[mm] number
Aorta 25.0 1
Arteries 4.0 159
Arteioles 0.06 1.4*10^7
Capillaries 0.012 2.9*10^9
from the information, let
be the mass flow rate,
is density, n number of vessels, and A is the cross-section area for each vessel
the flow rate is constant so it is equal for all vessels,
The average velocity is related to the flow rate by:

we clear the side where v is in:

area is π*R^2 where R is the average radius of the vessel (diameter/2)
we get:

you can directly see in the last equation that if we go from the aorta to the capillaries, the number of vessels is going to increase ( n will increase and R is going to decrease ) . From the table, R is significantly smaller in magnitude orders than n, therefore, it wont impact the results as much as n. On the other hand, n will change from 1 to 2.9 giga vessels which will dramatically reduce the average blood velocity