Answer:
HI(aq) + H₂O(ℓ) ⟶ H₃O⁺(aq) + I⁻(aq)
Explanation:
The HI donates a proton to the water, converting it to a hydronium ion
HI(aq) + H₂O(ℓ) ⟶ H₃O⁺(aq) + I⁻(aq)
Thus, the HI is behaving like a Brønsted acid.
First, we construct the reaction equation:
Na₂SO₃ + 2HCl → 2NaCl + SO₂ + H₂O
H₂SO₃ is formed as an intermediate but decomposes to water and SO₂ gas.
Answer:
Book on Table
Car at the Hilltop
Falling Objects
Skydiver
Hammering a Nail
Dam Water
Roller Coaster
Stretched Rubber Band
Simple Pendulum
Compressed Spring
Battery
Flashlight
Exothermic Chemical Reaction
Burning of Oil, Gas and Coal
Wind Turbine
Explanation:
have a nice day!
The molecular mass is 44.01 g/mol
They can decay through one of three ways:
alpha decay
beta decay and
gamma decay
ALPHA- particle with two neutrons and two protons is ejected from the nucleus of the radioactive atom. this particle released is called an alpha particle. Only occurs with heavy metals.
BETA- pretty much when a proton is transformed into a neutron, or vise versa. in a beta minus decay, the nuetron decays into a proton and in a beta plus decay, a proton decays into a neutron
GAMMA- the nucleus changes from a high energy state to a low energy state by releasing electromagnetic radiation (photons). the number of protons and neutrons stay the same during this reaction therefore the element is still the same.