Solar energy and Geothermal energy are your answers :)
Answer:
The planes’ acceleration from A to B is 500m/s^2
Explanation:
Given that the initial velocity u is 8000m/s
and also given the final velocity v=10,000 m/s
the time taken to move from A to B = 40 second
The acceleration is defined as the rate of change of velocity with time
we know that the expression for acceleration is given as
a=(v-u)/t
substituting our given data into the expression for a we have
a=(10000-8000)/40
a=2000/40
a=500m/s^2
The planes’ acceleration from A to B is 500m/s^2
Question:
A wire 2.80 m in length carries a current of 5.20 A in a region where a uniform magnetic field has a magnitude of 0.430 T. Calculate the magnitude of the magnetic force on the wire assuming the following angles between the magnetic field and the current.
(a)60 (b)90 (c)120
Answer:
(a)5.42 N (b)6.26 N (c)5.42 N
Explanation:
From the question
Length of wire (L) = 2.80 m
Current in wire (I) = 5.20 A
Magnetic field (B) = 0.430 T
Angle are different in each part.
The magnetic force is given by

So from data

Now sub parts
(a)

(b)

(c)

Answer:
20 km/h
Explanation:
45 km ÷ 2.25 hours (15 mins is 0.25 hours)
= 20
20 km/h
Answer:
the required revolution per hour is 28.6849
Explanation:
Given the data in the question;
we know that the expression for the linear acceleration in terms of angular velocity is;
= rω²
ω² =
/ r
ω = √(
/ r )
where r is the radius of the cylinder
ω is the angular velocity
given that; the centripetal acceleration equal to the acceleration of gravity a
= g = 9.8 m/s²
so, given that, diameter = 4.86 miles = 4.86 × 1609 = 7819.74 m
Radius r = Diameter / 2 = 7819.74 m / 2 = 3909.87 m
so we substitute
ω = √( 9.8 m/s² / 3909.87 m )
ω = √0.002506477 s²
ω = 0.0500647 ≈ 0.05 rad/s
we know that; 1 rad/s = 9.5493 revolution per minute
ω = 0.05 × 9.5493 RPM
ω = 0.478082 RPM
1 rpm = 60 rph
so
ω = 0.478082 × 60
ω = 28.6849 revolutions per hour
Therefore, the required revolution per hour is 28.6849