Answer:
7.72 Liters
Explanation:
normal body temperature = T_body =37° C
temperature of ice water = T_ice =0°c
specfic heat of water = c_{water} =4186J/kg.°C
if the person drink 1 liter of cold water mass of water is = m = 1.0kg
heat lost by body is Qwater =mc_{water} ΔT
= mc{water} ( T_ice - T_body)
= 1.0×4186× (0 -37)
= -154.882 ×10^3 J
here negative sign indicates the energy lost by body in metabolic process energy expended due to brisk - hour long walk is Q_{walk} = 286 kilocalories
= 286×4186J
so number of liters of ice water have to drink is
n×Q_{water} =Q_{walk} n= Q_{walk}/ Q_{water}
= 286×4186J/154.882×10^3 J
= 7.72 Liters
Some benefits to solar power:
Isolated power is very abundant on earth.
Is very sustainable (5 billion years of good use)
Eco friendly excluding panel production.
Some disadvantages:
Very expensive to set up
Takes up a lot of space per person
Requires exotic materials to construct
Energy storage is difficult with solar cells compared to fossil fuels.
The first law of thermodynamics is expresses by
D. ΔU=Q-W
which means change in internal energy of system = Heat added to system minus work done by the system
All are expressed in Joules.
This law is based on principle of conservation of energy.
Answer:
Just 3
Explanation:
I believe the other two are incorrect
You can look at groups in the same group (the columns), since they tend to have similar properties. For example, the alkali metals in group one react aggressively with water and form white compounds.