Effort force
Explanation:
When the potion of fulcrum and weight is changed, the mechanical advantage changes.Increasing the distance between the fulcrum and the effort, there is a proportion increase in effort required to lift a load.The ration of the distance from the fulcrum to the position of input and output application gives the mechanical advantage in levers when losses due to friction are not considered.
Learn More
Mechanical advantage in Levers : brainly.com/question/11600677
Keywords : Levers, fulcrum, position
#LearnwithBrainly
The magnitude of the sum of the frictional forces acting on the bike and its rider is 400N.
<h3>What is friction force?</h3>
The friction force is the opposing force which acts on the object which is in relative motion.
The driving force is equal and opposite to the friction force acting between road and bicycle.
Friction force = 400N
The friction force between rider and bike is zero.
So the magnitude of sum of friction force = 400N +0 = 400N
Thus, the magnitude of the sum of the frictional forces acting on the bike and its rider.
Learn more about friction force.
brainly.com/question/1714663
#SPJ1
Q= mcΔT
Where Q is heat or energy
M is mass, c is heat capacitance and t is temperature
You have to convert Celsius into kelvin in order to use this formula I believe
Celsius + 273 = Kelvin
21 + 273 = 294K
363 + 273 = 636K
Now...
Q= (0.003)(0.129)(636-294)
Q= 0.132 J if you are using kilograms, in terms of grams which seems more appropriate the answer would be 132J of energy.
Answer:

Explanation:
The frequency of a wave can be found using the following formula.

where <em>f</em> is the frequency, <em>v</em> is the velocity/wave speed, and λ is the wavelength.
The wavelength is 10 meters and the velocity is 200 meters per second.
- 1 m/s can also be written as 1 m*s^-1
Therefore:

Substitute the values into the formula.

Divide and note that the meters (m) will cancel each other out.


- 1 s^-1 is equal to Hertz
- Therefore, our answer of 20 s^-1 is equal to 20 Hz

The frequency of the wave is <u>20 Hertz</u>
Since the two taped poles of the magnets labeled A and B attracts one to each other, we know that the two taped poles are oppsosite.
So, you can predict with total certainty that when she brings the taped end of the third magnet (magnet C) near each of the first two magntes, in one case they will attract each other and in the other case they will repele mutually.
You are certain of that because, since the taped poles of the first two magnets are opposite, the pole of the third magnet has to be equal to one of the two first taped poles and opposite to the other of the two firest taped poles.