830 mL
The volume of an 2.3 m solution with 212 grams of calcium chloride (cacl2) dissolved is 830 mL.
The solution has a concentration of 2.3 mol/L.
<h3>a) Moles of CaCl2</h3>
Molar mass of CaCl2 = 110.98 g/mol
Moles of CaCl2 = 212 g CaCl2 x (1 mol CaCl2/110.98 g CaCl2)
= 1.910 mol CaCl2
<h3>b) Volume of solution</h3>
V = 1.910 mol CaCl2 x (1 L solution/2.3 mol CaCl2) = 0.83 L solution
= 830 mL solution
<h3>How much CaCl2 is there in the solution by molarity?</h3>
- The number of moles is 0.125 x 2 = 0.25 mol since the molarity is 2.0M.
- To get the answer of 27.745 g, simply multiply this by the molar mass of calcium chloride, which is 110.98 g/mol.
To learn more about CaCl2 solution visit:
brainly.com/question/1053707
#SPJ4
Answer:

Explanation:
Using Laplace's law of surface tension:

where:
P = pressure
T = surface tension
r = radius
In the longer alveoli with radius of 0.07 mm =
; we have:
P = 
P = 
In the smaller alveoli with radius 0.05 mm =
; we have:
P = 
P = 
The pressure difference can now be calculate as follows:
Pressure difference = 
Pressure difference = 
Answer:
Number of moles of Fe = 10 mol
Number of moles of CO₂ = 15 mol
Explanation:
Given data:
Number of moles of iron oxide = 5 mol
Number of moles of carbon monoxide = 25 mol
Number of moles of product = ?
Solution:
Fe₂O₃ + 3CO → 2Fe + 3CO₂
Now we will compare the moles of reactant with product.
Fe₂O₃ : Fe
1 : 2
5 : 2×5 = 10 mol
Fe₂O₃ : CO₂
1 : 3
5 : 3×5 = 15 mol
CO : Fe
3 : 2
25 : 2/3×25 = 16.7 mol
CO : CO₂
3 : 3
25 : 25
Less number of moles of Fe and CO₂ are formed by iron oxide thus it will act as limiting reactant while CO is inn excess.
DNA and RNA can also be ISOLATED from the same biological sample.
So the answer is no, both DNA and RNA are together.