1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alborosie
3 years ago
14

If the earth's magnetic field has strength 0.50 gauss and makes an angle of 20.0 degrees with the garage floor, calculate the ch

ange in the magnetic flux δφb, in wb, through one of the loops of the coil during the rotation.
Physics
1 answer:
lys-0071 [83]3 years ago
8 0

Answer:

ΔΦ = -3.39*10^-6

Explanation:

Given:-

- The given magnetic field strength B = 0.50 gauss

- The angle between earth magnetic field and garage floor ∅ = 20 °

- The loop is rotated by 90 degree.

- The radius of the coil r = 19 cm

Find:

calculate the change in the magnetic flux δφb, in wb, through one of the loops of the coil during the rotation.

Solution:

- The change on flux ΔΦ occurs due to change in angle θ of earth's magnetic field B and the normal to circular coil.

- The strength of magnetic field B and the are of the loop A remains constant. So we have:

                         Φ = B*A*cos(θ)

                         ΔΦ = B*A*( cos(θ_1) - cos(θ_2) )

- The initial angle θ_1 between the normal to the coil and B was:

                         θ_1  = 90° -  ∅

                         θ_1  = 90° -  20° = 70°

The angle θ_2 after rotation between the normal to the coil and B was:

                         θ_2  =  ∅

                         θ_2  = 20°

- Hence, the change in flux can be calculated:

                        ΔΦ = 0.5*10^-4*π*0.19*( cos(70) - cos(20) )

                        ΔΦ = -3.39*10^-6

                       

You might be interested in
Does the sun sun traces shortest path across local sky on june solstice
viktelen [127]
The June solstice in the Northern hemisphere is the summer solstice. The June Solstice in the Southern hemisphere is the winter solstice. The summer solstice is equivalent to the longest day while the winter solstice is equivalent to the shortest day. Therefore on the local sky, when is the June solstice we have have the longest day (longest path of sun in the sky) in the Northern hemisphere and the shortest day (shortest path of sun in the sky) in the Southern hemisphere.
7 0
3 years ago
How are electrical signals transmitted over long distances?
forsale [732]

Answer:

Over such small distances, digital data may be transmitted as direct, two-level electrical signals over simple copper conductors. This results from the electrical distortion of signals traveling through long conductors, and from noise added to the signal as it propagates through a transmission medium.

4 0
3 years ago
Rita jeptoo of kenya was the first female finisher in the 110th boston marathon. she ran the first 10.0 km in a time of 0.5689 h
stira [4]

Part a

Answer: 17.58 km/h

Average speed=\frac{Total\hspace{1mm}Distance}{Total\hspace{1mm}Time}

Total Distance =10 km

Total time =0.5689 h

\Rightarrow Average speed=\frac{10\hspace{1mm}km}{0.5689\hspace{1mm}h}=17.6 \hspace{1mm}km/h

Part b

Answer: 17.626 km/h

Average speed=\frac{Total\hspace{1mm}Distance}{Total\hspace{1mm}Time}

Total Distance =42.195 km

Total time =2.3939 h

\Rightarrow Average speed=\frac{42.195\hspace{1mm}km}{2.3939\hspace{1mm}h}=17.626\hspace{1mm}km/h

8 0
3 years ago
Nvm i got the answer but <br> free points
faust18 [17]

Answer:

thank you 谢谢

Explanation:

8 0
3 years ago
Read 2 more answers
Two satellites are in circular orbits around the earth. The orbit for satellite A is at a height of 403 km above the earth’s sur
BARSIC [14]

Answer:

v_A=7667m/s\\\\v_B=7487m/s

Explanation:

The gravitational force exerted on the satellites is given by the Newton's Law of Universal Gravitation:

F_g=\frac{GMm}{R^{2} }

Where M is the mass of the earth, m is the mass of a satellite, R the radius of its orbit and G is the gravitational constant.

Also, we know that the centripetal force of an object describing a circular motion is given by:

F_c=m\frac{v^{2}}{R}

Where m is the mass of the object, v is its speed and R is its distance to the center of the circle.

Then, since the gravitational force is the centripetal force in this case, we can equalize the two expressions and solve for v:

\frac{GMm}{R^2}=m\frac{v^2}{R}\\ \\\implies v=\sqrt{\frac{GM}{R}}

Finally, we plug in the values for G (6.67*10^-11Nm^2/kg^2), M (5.97*10^24kg) and R for each satellite. Take in account that R is the radius of the orbit, not the distance to the planet's surface. So R_A=6774km=6.774*10^6m and R_B=7103km=7.103*10^6m (Since R_{earth}=6371km). Then, we get:

v_A=\sqrt{\frac{(6.67*10^{-11}Nm^2/kg^2)(5.97*10^{24}kg)}{6.774*10^6m} }=7667m/s\\\\v_B=\sqrt{\frac{(6.67*10^{-11}Nm^2/kg^2)(5.97*10^{24}kg)}{7.103*10^6m} }=7487m/s

In words, the orbital speed for satellite A is 7667m/s (a) and for satellite B is 7487m/s (b).

7 0
3 years ago
Other questions:
  • Mileposts mark distance along a highway. A car traveled from milepost 15 to milepost 185. To calculate the average speed of the
    9·1 answer
  • While a roofer is working on a roof that slants at 37.0 ∘∘ above the horizontal, he accidentally nudges his 92.0 NN toolbox, cau
    9·1 answer
  • How is velocity different from speed?
    15·2 answers
  • A hawk flies in a horizontal arc of radius 12.0 m at constant speed 4.00 m/s. (a) Find its centripetal acceleration. (b) It cont
    9·1 answer
  • What is an organelle
    13·2 answers
  • A construction crane, like the one shown, has a power output of 1,500 watts. If it takes 200 seconds to lift the roof to the top
    13·1 answer
  • if you have a stick magnet and a u magnet plus a frigde magnet what way will it pull and which one is the strongest if it does n
    7·1 answer
  • A student runs up a flight of stairs which info is not needed to calculate the rate of the student is doing work against gravity
    14·1 answer
  • If an 80 kg is running at 2m/s, what is this man's momentum?<br> Hint: p=mv
    10·1 answer
  • astronauts brought back 500 lb of rock samples from the moon. how many kilograms did they bring back? 1 kg
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!