Answer:
The wavelength will be 33.9 cm
Explanation:
Given;
frequency of the wave, F = 1200 Hz
Tension on the wire, T = 800 N
wavelength, λ = 39.1 cm

Where;
F is the frequency of the wave
T is tension on the string
μ is mass per unit length of the string
λ is wavelength

when the tension is decreased to 600 N, that is T₂ = 600 N

Therefore, the wavelength will be 33.9 cm
A concave lens is a lens that has at least one of its surfaces or both surfaces curved inwards. Due to this reason, this lens diverges the light that falls on it and hence is also called a diverging lens. The concave lens is thinner in the middle compared to its edges. These are used in flashlights, binoculars, telescopes, etc.
Please see attached image for reference.
Answer:
The body stores it as fat
Explanation:
Answer:
0.1 L
Explanation:
From the question given above, we obtained the following data:
Initial volume (V₁) = 0.05 L
Initial Pressure (P₁) = 207 KPa
Final pressure (P₂) = 101 KPa
Final volume (V₂) =?
We can obtain the new volume (i.e the final volume) of the gas by using the Boyle's law equation as illustrated below:
P₁V₁ = P₂V₂
207 × 0.05 = 101 × V₂
10.35 = 101 × V₂
Divide both side by 101
V₂ = 10.35 / 101
V₂ = 0.1 L
Thus, the new volume of the gas is 0.1 L