1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tiny-mole [99]
2 years ago
7

The ___of a wave is the number of wavelengths that pass a fixed point in a second.

Physics
1 answer:
creativ13 [48]2 years ago
7 0

the frequency of a wave is the number of wavelengths that pass a fixed point in a second.

You might be interested in
What is the SI unit for graviational potential energy
scZoUnD [109]

Gravitational potential energy is energy. 
The unit of energy is the Joule.

1 Joule = 1 kilogram-meter² / sec²


3 0
3 years ago
Bernoulli's principle is responsible for most of the lift produced by an airplane wing.
Rina8888 [55]

Answer:

huiiiiuuu beautiful...

5 0
2 years ago
Future passive of( win)​
Inessa05 [86]

Answer:

three point charge positioned one x-axis if the charge and corresponding positions are +32Mc x=0 +20Mc x=40cm - 60Mc x=60cm find force 32Mc

Explanation:

7 0
2 years ago
A regular polygon has angkes of size 150° each.how many side has the polygon​
emmasim [6.3K]

Answer: 12

Explanation:

ıf each interior is 150 degrees, then each exterior angle is 180–150 or 30 degrees. Hence the polygon has 360/30 = 12 sides

5 0
2 years ago
PLEASE HELP ME 45 POINTS
sergij07 [2.7K]

Answer:

a) We kindly invite you to see the explanation and the image attached below.

b) The acceleration of the masses is 4.203 meters per square second.

c) The tension force in the cord is 28.02 newtons.

d) The system will take approximately 0.845 seconds to cover a distance of 1.5 meters.

e) The final speed of the system is 3.551 meters per second.

Explanation:

a) At first we assume that pulley and cord are both ideal, that is, masses are negligible and include the free body diagrams of each mass and the pulley in the image attached below.

b) Both masses are connected to each other by the same cord, the direction of acceleration will be dominated by the mass of greater mass (mass A) and both masses have the same magnitude of acceleration. By the 2nd Newton's Law, we create the following equation of equilibrium:

Mass A

\Sigma F = T - m_{A}\cdot g = -m_{A}\cdot a (1)

Mass B

\Sigma F = T - m_{B}\cdot g = m_{B}\cdot a (2)

Where:

T - Tension force in the cord, measured in newtons.

m_{A}, m_{B} - Masses of blocks A and B, measured in kilograms.

g - Gravitational acceleration, measured in meters per square second.

a - Net acceleration of the each block, measured in meters per square second.

By subtracting (2) by (1), we get an expression for the acceleration of each mass:

m_{B}\cdot a +m_{A}\cdot a = T-m_{B}\cdot g -T + m_{A}\cdot g

(m_{B}+m_{A})\cdot a = (m_{A}-m_{B})\cdot g

a = \frac{m_{A}-m_{B}}{m_{B}+m_{A}} \cdot g

If we know that m_{A} = 5\,kg, m_{B} = 2\,kg and g = 9.807\,\frac{m}{s^{2}}, then the acceleration of the masses is:

a = \left(\frac{5\,kg-2\,kg}{5\,kg+2\,kg}\right) \cdot\left(9.807\,\frac{m}{s^{2}} \right)

a = 4.203\,\frac{m}{s^{2}}

The acceleration of the masses is 4.203 meters per square second.

c) From (2) we get the following expression for the tension force in the cord:

T = m_{B}\cdot (a+g)

If we know that m_{B} = 2\,kg, g = 9.807\,\frac{m}{s^{2}} and a = 4.203\,\frac{m}{s^{2}}, then the tension force in the cord:

T = (2\,kg)\cdot \left(4.203\,\frac{m}{s^{2}}+9.807\,\frac{m}{s^{2}}  \right)

T = 28.02\,N

The tension force in the cord is 28.02 newtons.

d) Given that system starts from rest and net acceleration is constant, we determine the time taken by the block to cover a distance of 1.5 meters through the following kinematic formula:

\Delta y  = \frac{1}{2}\cdot a\cdot t^{2} (3)

Where:

a - Net acceleration, measured in meters per square second.

t - Time, measured in seconds.

\Delta y - Covered distance, measured in meters.

If we know that a = 4.203\,\frac{m}{s^{2}} and \Delta y = 1.5\,m, then the time taken by the system is:

t = \sqrt{\frac{2\cdot \Delta y}{a} }

t = \sqrt{\frac{2\cdot (1.5\,m)}{4.203\,\frac{m}{s^{2}} } }

t \approx 0.845\,s

The system will take approximately 0.845 seconds to cover a distance of 1.5 meters.

e) The final speed of the system is calculated by the following formula:

v = a\cdot t (4)

Where v is the final speed of the system, measured in meters per second.

If we know that a = 4.203\,\frac{m}{s^{2}} and t \approx 0.845\,s, then the final speed of the system is:

v = \left(4.203\,\frac{m}{s^{2}} \right)\cdot (0.845\,s)

v = 3.551\,\frac{m}{s}

The final speed of the system is 3.551 meters per second.

8 0
2 years ago
Other questions:
  • A 100 watt incandescent light bulb is operated for 7 hours, and a 32 watt fluorescent light bulb is operated for the same period
    10·1 answer
  • Knowing the constant g what will the gravitational force between two masses be if the gravitational force between them is 36n an
    8·1 answer
  • How do adaptations help an animal survive?
    7·2 answers
  • Which two substances have no fixed shape and no fixed volume?
    9·1 answer
  • A rectangular metal bar has length of 20cm, width of 5cm. Mass of the block is 2kg and its density is 5000kg/m3. Find the height
    13·1 answer
  • ________ are organisms that are able to convert the sun's energy into usable energy.
    12·1 answer
  • A 0.25-kg coffee mug is made from a material that has a specific heat capacity of 950 J/(kg · C°) and contains 0.30 kg of water.
    6·1 answer
  • What is genetic energy and what is potential energy
    13·2 answers
  • A force acting on a body of mass 200g displace it through 200cm in 5s. Find the magnitude of the force if the initial velocity o
    7·2 answers
  • a effort of 100n can raise a load of 2000n in a hydraulic press. calculate the cross-sectional area of a small piston in it. The
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!