Explanation:
It is given that,
The acceleration of the toboggan, 
Initial speed of the toboggan, u = 0
We need to find the distance covered by the toboggan. Using the second equation of motion as :

At t = 1 s


At t = 2 s


At t = 3 s


Hence, this is the required solution.
Answer:
The magnitude of Adam's displacement is 0 m
Explanation:
Given;
Adam's distance from his home to the mall, d₁ = 1100m
then, his distance from the mall back to his home, d₂ = 1100m
Adam's displacement is given by;
Displacement = final position - initial position
Adam's displacement = d₂ - d₁
Adam's displacement = 1100 m - 1100 m = 0 m
Therefore, the magnitude of Adam's displacement is 0 m
The force of friction is equal to the pushing force, and the acceleration is zero
Explanation:
In this problem, we are pushing a piano along the floor, in the horizontal direction.
There are 2 forces acting in the horizontal direction on the piano:
- The applied force,
, acting forward - The force of friction,
, acting backward
Therefore, the net force in the horizontal direction is

According to Newton's second law, the net force is equal to the product between the piano's mass (m) and its acceleration:

Combining the two equations,

However, we are also told that the piano moves at constant speed, therefore the acceleration is zero:

And so,

which means that the force of friction is equal to the applied force.
Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly
It indicates that you should proceed with caution. You should slow down and be prepared to stop to safely navigate this intersection.
Answer:
minimum length of a surface crack is 18.3 mm
Explanation:
Given data
plane strain fracture toughness K = 82.4 MPa m1/2
stress σ = 345 MPa
Y = 1
to find out
the minimum length of a surface crack
solution
we will calculate length by this formula
length = 1/π ( K / σ Y)²
put all value
length = 1/π ( K / σ Y)²
length = 1/π ( 82.4
/ 345× 1)²
length = 18.3 mm
minimum length of a surface crack is 18.3 mm