1. Define Newtons second law of motion (this will help put things into perspective)
2.Get the mass of the object (in this case 75 kg)
3.The net force acting on the object...find it (in this case 500 N)
4.Change the equation to F=ma (500=75a)
5.Divide both sides by 75 and that is the acceleration.
Explanation:
We'll need two equations.
v² = v₀² + 2a(x - x₀)
where v is the final velocity, v₀ is the initial velocity, a is the acceleration, x is the final position, and x₀ is the initial position.
x = x₀ + ½ (v + v₀)t
where t is time.
Given:
v = 47.5 m/s
v₀ = 34.3 m/s
x - x₀ = 40100 m
Find: a and t
(47.5)² = (34.3)² + 2a(40100)
a = 0.0135 m/s²
40100 = ½ (47.5 + 34.3)t
t = 980 s
Answer:
The time is 1.8s
Explanation:
The ball droped, will freely fall under gravity.
Hence we use free fall formula to calculate the time by the ball to hit the ground

Where h is the height from which the ball is droped, g is the acceleration due to gravity that acted on the ball, and t is the time taken by the ball to hit the ground.
From the question,
h=16m
Also, let take

By substitution we obtain,


Diving through by 9.8


square root both sides, we obtain

