(a) Let
be the maximum linear speed with which the ball can move in a circle without breaking the cord. Its centripetal/radial acceleration has magnitude

where
is the radius of the circle.
The tension in the cord is what makes the ball move in its plane. By Newton's second law, the maximum net force on it is

so that

Solve for
:

(b) The net force equation in part (a) leads us to the relation

so that
is directly proportional to the square root of
. As the radius
increases, the maximum linear speed
will also increase, so the cord is less likely to break if we keep up the same speed.
Answer:
The velocity is 31.25 m/s and direction is toward west.
Explanation:
Given that,
Distance 
Magnetic field 
Mass of proton 
Radius of earth 
Radius of orbit 


We need to calculate the speed
Using formula of magnetic field


Put the value into the formula


Hence, The velocity is 31.25 m/s and direction is toward west.
Answer:
O The particles of the medium move more slowly and there are fewer chances to transfer energy.
Explanation:
Various media are made up of particles. These particles are in constant motion according to the kinetic theory of matter. Recall that temperature has been defined as the average kinetic energy of the particles in a medium. Hence, for any given medium, the velocity of particle motion increases or decreases linearly with temperature.
The speed of particles in any medium increases or decreases as the temperature of the medium increases or decreases as emphasised above. Hence, at low temperature, the velocity of waves set up by the motion of particles in a medium decreases and transfer the wave energy to neighbouring particles occurs more slowly than at high temperatures.
Answer:
any object that has density more than 1.4
Explanation:
The object that has density more than 1.4 is denser than the honey
Answer:
1. Energy = 2880 Joules.
2. Energy = 60 Joules.
3. Quantity of charge = 120 Coulombs.
Explanation:
Given the following data;
1. Voltage = 12 Volts
Current = 0.5 Amps
Time, t = 8 mins to seconds = 8 * 60 = 480 seconds
To find the energy;
Power = current * voltage
Power = 12 * 0.5
Power = 6 Watts
Next, we find the energy transferred;
Energy = power * time
Energy = 6 * 480
Energy = 2880 Joules
2. Charge, Q = 4 coulombs
Potential difference, p.d = 15V
To find the total energy transferred;
Energy = Q * p.d
Energy = 4 * 15
Energy = 60 Joules
3. Voltage = 6 Volts
Current = 1 Amps
Time = 2 minutes to seconds = 2 * 60 = 120 seconds
To find the quantity of charge;
Quantity of charge = current * time
Quantity of charge = 1 * 120
Quantity of charge = 120 Coulombs