1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
serg [7]
3 years ago
12

Monochromatic light falls on two very narrow slits 0.048 mm apart. successive fringes on a screen 5.00 m away are 6.5 cm apart n

ear the center of the pattern. determine the frequency of the light.
Physics
1 answer:
atroni [7]3 years ago
4 0
In a double-slit interference experiment, the distance y of the maximum of order m from the center of the observed interference pattern on the screen is
y= \frac{m \lambda D}{d}
where D=5.00 m is the distance of the screen from the slits, and 
d=0.048 mm=0.048 \cdot 10^{-3}m is the distance between the two slits.
The fringes on the screen are 6.5 cm=0.065 m apart from each other, this means that the first maximum (m=1) is located at y=0.065 m from the center of the pattern.
Therefore, from the previous formula we can find the wavelength of the light:
\lambda =  \frac{yd}{mD}= \frac{(0.065 m)(0.048 \cdot 10^{-3}m)}{(1)(5.00 m)}=  6.24 \cdot 10^{-7}m

And from the relationship between frequency and wavelength, c=\lambda f, we can find the frequency of the light:
f= \frac{c}{\lambda}= \frac{3 \cdot 10^8 m/s}{6.24 \cdot 10^{-7}m}=4.81 \cdot 10^{14}Hz
You might be interested in
A 165 N object is supported by three cables(T1, T2 and T3), of which T1 and T2 are making angles θ1 = 52o and θ2 = 39o as shown
Liono4ka [1.6K]

Answer:

?Tension in string 2, T2 (in Newton) =

Answer for part 2

Hhgeppp plzzz

3 0
2 years ago
A spring has a equilibrium length of 10.0 cm. When a force of 40.0 N is applied to the spring, the spring has a length of 14.0 c
mote1985 [20]

Answer:

The value of the spring constant of this spring is 1000 N/m

Explanation:

Given;

equilibrium length of the spring, L = 10.0 cm

new length of the spring, L₀ = 14 cm

applied force on the spring, F = 40 N

extension of the spring due to applied force, e = L₀ - L = 14 cm - 10 cm = 4 cm

From Hook's law

Force applied to a spring is directly proportional to the extension produced, provided the elastic limit is not exceeded.

F ∝ e

F = ke

where;

k is the spring constant

k = F / e

k = 40 / 0.04

k = 1000 N/m

Therefore, the value of the spring constant of this spring is 1000 N/m

7 0
3 years ago
Physicist Max Planck showed how objects like stars give off different colors based on their temperature. What color are the hott
jenyasd209 [6]

Answer:

the brightest found are Blue - White with

Explanation:

The energy emission of objects increases with their temperature, specifically Wien described the process in an expression

 

          \lambda_{maximum} T = 2,898 10⁻³

With this expression we can find the temperature of the stars by the color they emit.

Specifically the Sun has a color of 550 nm which corresponds to 5400K

bright stars have a BLUE color corresponding to 7500K

the brightest found are Blue - White with a temperature of 20000K

7 0
3 years ago
A 50.0 Watt stereo emits sound waves isotropically at a wavelength of 0.700 meters. This stereo is stationary, but a person in a
photoshop1234 [79]

Answer:

a) f' = 432 Hz

b) I = 8.12*10^-4 W/m^2

Explanation:

a) To calculate the frequency of sound waves that car receives, you take into account the Doppler effect. In this case (observer moves away of the source) you have the following formula:

f'=f(\frac{v-v_o}{v+v_s})    (1)

where

f: frequency of the source = ?

v: speed of sound = 343 m/s

vo: speed of the observer = 40.0 m/s

vs: speed of the source = 0 m/s (stationary)

You replace the values of all parameters in the equation (1):

To calculate f' you first calculate the frequency of the sound wave, by using the following formula:

v=\lambda f\\\\

v: speed of sound

λ: wavelength = 0.700 m

f=\frac{v}{\lambda}=\frac{343m/s}{0.700m}=480Hz

Next, you replace the values of all parameters in the equation (1):

f'=(490Hz)(\frac{343m/s-40.0m/s}{343m/s})=432Hz

hence, the frequency perceived by the car is 432 Hz

b) To calculate the power of the sound wave, when the car is 70.0 maway from the speaker, you use the following formula:

I=\frac{P}{4\pi r^2}

P: power of the source = 50.0 W

r: distance to the source = 70.0 m

I=\frac{50.0 W}{4\pi(70.0m)^2}=8.12*10^{-4}\frac{W}{m^2}

hence, the intensity is 8.12*10^⁻4 W/m^2

3 0
3 years ago
Gravity is not considered matter. <br>A. True <br>B. False​
Strike441 [17]

Answer:

false gravity is not considered matter

7 0
3 years ago
Other questions:
  • An object is at rest on the ground. The object experiences a downward gravitational force from Earth. Which of the following pre
    13·2 answers
  • A piece of wood has a volume of 4.6 cm to the power of 3, and a mass of 3.7 g what is the density of the wood
    9·1 answer
  • Relative to some reference points,your nose is in motion when you run. relative to others, it is not in motion. give one example
    15·1 answer
  • If we decrease the time it takes for a car to travel over the same distance, this will
    10·2 answers
  • A student sits atop a platform a distance h above the ground. He throws a large firecracker horizontally with a speed. However,
    13·1 answer
  • Your car gets a flat! You go from 90 kilometers per hour to a stop in 6 seconds. What is your rate of deceleration? (it's negati
    11·1 answer
  • If a leaf falls from a tree, has work been done on the leaf? Explain.
    7·1 answer
  • Find the mass of an object with force 280 Newton and acceleration as 18 m/s2.​
    5·1 answer
  • Given the mathematical representation of Coulomb’s Law, , where , describe in words the relationship among electric force, charg
    8·1 answer
  • Which statements best describe displacement? Check all that apply.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!