The heat needed is given by Mcθ , where m is the mass in Kg, c is the heat capacity of aluminium, and θ is the change in temperature.
Specific heat capacity of aluminium is 0.9 j/g°c
thus; Heat = 55 × 0.9 × 72.2
= 3573.9 Joules or 3.574 kJ
Answer:
the maximum current is 500 A
Explanation:
Given the data in the question;
the B field magnitude on the surface of the wire is;
B = μ₀i / 2πr
we are to determine the maximum current so we rearrange to find i
B2πr = μ₀i
i = B2πr / μ₀
given that;
diameter d = 2 mm = 0.002 m
radius = 0.002 / 2 = 0.001 m
B = 0.100 T
we know that permeability; μ₀ = 4π × 10⁻⁷ Tm/A
so we substitute
i = (0.100)(2π×0.001 ) / 4π × 10⁻⁷
i = 500 A
Therefore, the maximum current is 500 A
Answer:
<em>The ball will go as high as 8.46 m</em>
Explanation:
<u>Projectile Motion</u>
It's the type of motion that experiences an object launched at a certain height above the ground and moves along a curved path exclusively under the action of gravity.
Being vo the initial speed of the object, θ the initial launch angle, and g the acceleration of gravity, then the maximum height hm can be calculated as follows:

The soccer ball is kicked at a speed of vo=24 m/s at an angle of θ=31°. Taking the value of
, then:



The ball will go as high as 8.46 m
The acceleration of the body in terms of the gravitational constant G is G.
According to Newton's law of universal gravitation;
F = Gm1m2/r^2
G = gravitational constant
m1 = mass of the first body
m2 = mass of the second body
r = distance between the two bodies
Substituting values to find the force on the two bodies;
F = G × 1 × 2/1^2
F = 2G
For the 2 Kg mass
F = ma
m = mass
a = acceleration
F = gravitational force
Hence,
2G = 2a
a = 2G/2
a = G
Learn more: brainly.com/question/13860566
Answer:
d = 10.076 m
Explanation:
We need to obtain the velocity of the ball in the y direction
Vy = 24.5m/s * sin(35) = 14.053 m/s
To obtain the distance, we use the formula
vf^2 = v0^2 -2*g*d
but vf = 0
d = -vo^2/2g
d = (14.053)^2/2*(9.8) = 10.076 m