1.
<span>The Galápagos Islands contain more different species than any comparable place on the earth.
2.</span>
<span>Their aim is to prevent extinctions.
3.</span>
<span>a gas that absorbs and re-releases heat radiated by the earth
4</span>
<span>acid rain
5.</span>
<span>stratospheric ozone
6</span>
<span>methane
7.</span>
landfill
8.
<span>catalytic converter</span>
Complete Question
An athlete at the gym holds a 3.0 kg steel ball in his hand. His arm is 70 cm long and has a mass of 4.0 kg. Assume, a bit unrealistically, that the athlete's arm is uniform.
What is the magnitude of the torque about his shoulder if he holds his arm straight out to his side, parallel to the floor? Include the torque due to the steel ball, as well as the torque due to the arm's weight.
Answer:
The torque is 
Explanation:
From the question we are told that
The mass of the steel ball is 
The length of arm is 
The mass of the arm is 
Given that the arm of the athlete is uniform them the distance from the shoulder to the center of gravity of the arm is mathematically represented as

=>
=>
Generally the magnitude of torque about the athlete shoulder is mathematically represented as

=> 
=> 
Answer:
0.36 kg-m/s
Explanation:
Given that,
Mass of a ball, m = 0.06 kg
Initial velocity of the ball, u = 20 m/s
Final velocity of the ball, v = 26 m/s
We need to find the change in momentum of the tennis ball. It is equal to the final momentum minus initial momentum

So, the change in momentum of the ball is 0.36 kg-m/s.