Answer:
Explanation:
Capacitor of 0.75μF, charged to 70V and connect in series with 55Ω and 140 Ω to discharge.
Energy dissipates in 55Ω resistor is given by V²/R
Since the 55ohms and 140ohms l discharge the capacitor fully, the voltage will be zero volts and this voltage will be shared by the resistor in ratio.
So for 55ohms, using voltage divider rule
V=R1/(R1+R2) ×Vt
V=55/(55+140) ×70
V=19.74Volts is across the 55ohms resistor.
Then, energy loss will be
E=V²/R
E=19.74²/55
E=7.09J
7.09J of heat is dissipated by the 55ohms resistor
Answer:
Nuclear Fusion
Explanation:
The process releases energy because the total mass of the resulting single nucleus is less than the mass of the two original nuclei. The leftover mass becomes energy.
Answer:
(a). The reactive power is 799.99 KVAR.
(c). The reactive power of a capacitor to be connected across the load to raise the power factor to 0.95 is 790.05 KVAR.
Explanation:
Given that,
Power factor = 0.6
Power = 600 kVA
(a). We need to calculate the reactive power
Using formula of reactive power
...(I)
We need to calculate the 
Using formula of 

Put the value into the formula


Put the value of Φ in equation (I)


(b). We draw the power triangle
(c). We need to calculate the reactive power of a capacitor to be connected across the load to raise the power factor to 0.95
Using formula of reactive power


We need to calculate the difference between Q and Q'

Put the value into the formula


Hence, (a). The reactive power is 799.99 KVAR.
(c). The reactive power of a capacitor to be connected across the load to raise the power factor to 0.95 is 790.05 KVAR.
Supplementary angles add up to 180°.
If one is 40°, then the other is (180° - 40°) = 140° .
None of those choices describes a plane.
Choice 'C' is the only example of a plane.
Answer:
a = 0.7267
, acceleration is positive therefore the speed is increasing
Explanation:
The definition of acceleration is
a = dv / dt
they give us the function of speed
v = - (t-1) sin (t² / 2)
a = - sin (t²/2) - (t-1) cos (t²/2) 2t / 2
a = - sin (t²/2) - t (t-1) cos (t²/2)
the acceleration for t = 4 s
a = - sin (4²/2) - 4 (4-1) cos (4²/2)
a = -sin 8 - 12 cos 8
remember that the angles are in radians
a = 0.7267
the problem does not indicate the units, but to be correct they must be m/s²
We see that the acceleration is positive therefore the speed is increasing