When the frequency decreases the wavelength is further apart. When it increases its closer together. Think about a flat line when the frequency is low the wavelengths are wider. When its a high frequency the squiggly lines on the moniter are taller and thinner so the wavelengths are not as wide and not that far from each other depending on how high the frequency is.
Answer:
Solution
verified
Verified by Toppr
(a) The labelled diagram is shown.
(b) The refractive index of diamond is 2.42. Refractive index of diamond is the ratio of the speed of light in air to the speed of light in diamond.i.e.,
μ=
Speedoflightindiamond
Speedoflightinair
and, the ratio of these velocities is 2.42. i.e., This means that the speed of light in diamond will reduce by a factor of 2.42 as compared to its speed in air. In other words, the speed of light in diamond is
1/2.42
times the speed of light in vacuum.
Explanation:
a) Draw and label the diagram given :
(i) Incident ray
(ii) Refracted ray
(iii) Emergent ray
(iv) Angle of reflection
(v) Angle of deviation
(v) Angle of emergence
(b) The refractive index of diamond is 2.42. What is the meaning of this statement in relation to speed of light?
it is the point at infinity where it is at a distance from the curve equal to the radius of curvature lying on the normal vector. Sorry no diagram
Answer:
<h2><em>
6000 counts per second</em></h2>
Explanation:
If a sample emits 2000 counts per second when the detector is 1 meter from the sample, then;
2000 counts per second = 1 meter ... 1
In order to know the number of counts per second that would be observed when the detector is 3 meters from the sample, we will have;
x count per second = 3 meter ... 2
Solving the two expressions simultaneously for x we will have;
2000 counts per second = 1 meter
x counts per second = 3 meter
Cross multiply to get x
2000 * 3 = 1* x
6000 = x
<em></em>
<em>This shows that 6000 counts per second would be observed when the detector is 3 meters from the sample</em>
The three main constructive forces are crustal deformation, volcanic eruptions, and deposition of sediment.