The correct answer for the question that is being presented above is this one: "Schmidt-Cassegrain focus." A focal arrangement that has a thin lens that the light passes through before traveling down the tube to the objective mirror is a Schmidt-Cassegrain focus.
Here are the following choices:
a. Cassegrain focus
b. Newtonian focus
c. Schmidt-Cassegrain focus
<span>d. Schmidt focus</span>
As it is pushed deeper, the buoyant force on the jar will decrease. The correct option is B
<h3>What is buoyant force ?</h3>
The upward force applied to an object that is fully or partially submerged in a fluid is known as the buoyant force. Upthrust is another name for this upward thrust. A body submerged partially or completely in a fluid appears to shed weight, or to be lighter, due to the buoyant force.
The fluid under which an object is submerged exerts pressure, which is what generates the buoyancy force. Because a fluid's pressure rises with depth, the buoyancy force is always upward.
To know more about buoyant force you may visit the link:
brainly.com/question/21990136
#SPJ4
Answer:
The angle of projection is 12.26⁰.
Explanation:
Given;
initial position of the dart, h₀ = 1.50 m
height above the ground reached by the dart, h₁ = 1.73 m
maximum height reached by the dart, Hm = h₁ - h₀ = 1.73 m - 1.50 m= 0.23 m
velocity of the dart, u = 10 m/s
The maximum height reached by the projectile is calculated as;

where;
θ is angle of projection
g is acceleration due to gravity = 9.8 m/s²

Therefore, the angle of projection is 12.26⁰.
Based on the forces acting on the axes, the resultant moments will be (345, 400, 600 N·m)
<h3>What would be resultant moment about x-axis?</h3>
= F₃ x 3
= -115 x 3
= -345 N·m
<h3>What would be resultant moment about y-axis?</h3>
= F₁ x 2
= -200 x 2
= -400 N·m
<h3>What would be the resultant moment about z-axis?</h3>
= F₄ x 2
= -300 x 2
= - 600 N·m
In conclusion, the resultant moment about x, y, and z axes is (345, 400, 600 N·m)
Find out more on resultant moments at brainly.com/question/6278006.