<span>3. relate to properties of elements and how they may react.
Periodic trends are specific patterns that are present in the periodic table that include size, electronic properties, melting point, electronegativity and metallic character. The trends exist due to the similar atomic structure of the elements within each group family.</span>
The Tyndall effect is used to identify a mixture as a colloid.
Answer:

Explanation:
Hello,
In this case, since the acid is monoprotic, we can notice a 1:1 molar ratio between, therefore, for the titration at the equivalence point, we have:

Thus, solving for the moles of the acid, we obtain:

Then, by using the mass of the acid, we compute its molar mass:

Regards.
the Calorimetry relationships you can find the amount of water in the calorimeter is m = 21.3 g
given parameters
- Lead mass M = 200.0 g
- Initial lead temperature T₁ = 176.4ºC
- Specific heat of Lead
= 0.129 J / g ºC - Sspecific heat of water
= 4.186 J / g ºC - Initial water temperature T₀ = 21.7ºC
- Equilibrium temperature T_f = 56.4ºC
to find
The body of water
Thermal energy is the energy stored in the body that can be transferred as heat when two or more bodies are in contact. Calorimetry is a technique where the energy is transferred between the body only in the form of heat and in this case the thermal energy of the lead is transferred to the calorimeter that reaches the equilibrium that the thematic energy of the two is equal
Q_{ceded} = Q_{absorbed}
Lead, because it is hotter, gives up energy
Q_{ceded} = M c_{e Pb} (T₁ - T_f)
The calorimeter that is colder absorbs the heat
Q_{absrobed} = m c_{e H_2O} (T_f - T₀)
where M and m are the mass of lead and water, respectively, c are the specific heats, T₁ is the temperature of the hot lead, T₀ the temperature of cold water and T_f the equilibrium temperature
M c_{ePb} (T₁ - T_f) = m c_{eH2O} (T_f - T₀)
m = 
let's calculate
m = 
m = 3096 / 145.25
m = 21.3 g
Using the Calorimetry relationships you can find the amount of water in the calorimeter is:
m = 21.3 g
learn more about calorimetry here:
brainly.com/question/15073428