Answer:
Explanation:
Given
Weight of Person 
Cave is
deep
Breaking stress 
Net Force on Person




The shortest time such that the person can be taken out of cave

where
h=distance moved
t=time
a=acceleration



Explanation:
Let me know if you have questions
Given that force is applied at an angle of 30 degree below the horizontal
So let say force applied if F
now its two components are given as


Now the normal force on the block is given as



now the friction force on the cart is given as



now if cart moves with constant speed then net force on cart must be zero
so now we have




so the force must be 199.2 N
0.36 J of work is done in stretching the spring from 15 cm to 18 cm.
To find the correct answer, we need to know about the work done to strech a string.
<h3>What is the work required to strech a string?</h3>
- Mathematically, the work done to strech a string is given as 1/2 ×K×x².
- K is the spring constant.
<h3>What will be the spring constant, if 40N force is required to hold a 10 cm to 15 cm streched spring?</h3>
- The force experienced by a streched spring is given as Kx. x is the length of the spring streched from its natural length.
- Then K = Force / x.
- Here x = 15 - 10 = 5 cm = 0.05 m
- K = 40/0.05 = 800N/m.
<h3>What will be the work required to strech that spring from 15 cm to 18 cm?</h3>
- Work done = 1/2×k×x²
- Here x= 18-15=3cm or 0.03 m
- So, W= 1/2×800×0.03² = 0.36 J.
Thus, we can conclude that the work done is 0.36 J.
Learn more about the spring force here:
brainly.com/question/14970750
#SPJ4
The student's shoulder supports the weight of the bag.
<h3>What is the free body diagram?</h3>
Free-body diagrams are utilized to display the relative direction and strength of all forces that are being applied to an item in a certain scenario. A unique illustration of the geometric diagrams that were covered in a previous lesson is the free-body diagram. We will make use of these graphics throughout the entire study of physics.
A university student is carrying a backpack. One strap is hanging the rucksack immobile from one shoulder.
The weight of the backpack is balanced by the shoulder of the student.
The free-body diagram is attached below.
More about the free body diagram link is given below.
brainly.com/question/24087893
#SPJ4