1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Juli2301 [7.4K]
3 years ago
11

If an astronaut throws an object in space, the object’s speed will _____

Physics
1 answer:
BigorU [14]3 years ago
7 0
The object's speed will not change.

In fact, after the astronaut throws the object, no additional forces will act on it (since the object is in free space). According to Newton's second law:
\sum F=ma
where the first term is the resultant of the forces acting on the body, m is the mass of the object and a its acceleration, we see that if no forces act on the object, then the acceleration is zero. Therefore, the acceleration of the object is zero, and its velocity remains constant.
You might be interested in
Determine the voltage ratings of the high-and-low voltage windings for this connection and the MVA rating of the autotransformer
SIZIF [17.4K]

Complete Question

The complete question is shown on the first uploaded image

Answer:

a

The High Voltage Rating for Auto - Transformer is 86kV

The  Low Voltage Rating for Auto - Transformer is 78kV

The MVA rating is 268.75MVA

b

The efficiency is 99.4%

Explanation:

From the question  we are given are given that

 The transformer has Mega Volt Amp rating of 25MVA

                          The frequency is 60-Hz

                           Voltage rating 8.0kV : 78kV

   The short circuit test gives : 453kV,321A,77.5kW

   The open circuit test gives : 8.0kV, 39.6A, 86.2kW

This can be represented on a diagram shown on the second uploaded image

From this diagram we can deduce that the The High Voltage Rating for Auto - Transformer is 86kV and the  Low Voltage Rating for Auto - Transformer is 78kV

 Now to obtain the current flowing through the 8kV  coil in the Auto-transformer we have

             \frac{25 \ Mega \ Volt\ Ampere }{8\ Kilo Volt}

The volt will cancel each other

             \frac{25*10^6}{8*10^3} =  3125\ A

 Now to obtain the required MVA rating we would multiply the value of Power obtained during the open circuit test by the value of the current calculated.we are making use of the power obtain during open circuit testing because the transformer at this point is not under any load.

MVA \ rating = (86*10^3)(3125) =268.75

We need to understand that Iron losses is due to open circuit test which has power = 86.2kW

While copper loss is due to short circuit test which has power = 77.5kW

The the current flowing through the secondary coil I_2 as shown in the circuit diagram can be obtained as

       I_2 = \frac{25*10^6}{78*10^3} =320.52 A \approx 321

Now the efficiency can be obtained as thus

           \frac{(operational \ MVA )*(Power factor \pf))}{(operational\  MVA (power factor pf) + copper loss + Iron loss)}*\frac{100}{1}

             =99.941%

8 0
2 years ago
Any one their to help
Dmitry [639]

Answer:

five dollars

Explanation:

im thick lol

7 0
2 years ago
On a horizontal surface is located
Ierofanga [76]

By Newton's second law, the net vertical force acting on the object is 0, so that

<em>n</em> - <em>w</em> = 0

where <em>n</em> = magnitude of the normal force of the surface pushing up on the object, and <em>w</em> = weight of the object. Hence <em>n</em> = <em>w</em> = <em>mg</em> = 196 N, where <em>m</em> = 20 kg and <em>g</em> = 9.80 m/s².

The force of static friction exerts up to 80 N on the object, since that's the minimum required force needed to get it moving, which means the coefficient of <u>static</u> friction <em>µ</em> is such that

80 N = <em>µ</em> (196 N)   →   <em>µ</em> = (80 N)/(196 N) ≈ 0.408

Moving at constant speed, there is a kinetic friction force of 40 N opposing the object's motion, so that the coefficient of <u>kinetic</u> friction <em>ν</em> is

40 N = <em>ν</em> (196 N)   →   <em>ν</em> = (40 N)/(196 N) ≈ 0.204

And so the closest answer is C.

(Note: <em>µ</em> and <em>ν</em> are the Greek letters mu and nu)

3 0
3 years ago
Narysuj wykres zależności v(t) jeśli w chwili początkowej t=0 V=10m/s w każdej sekundzie szybkość zmniejsza się o 1m/s . Po jaki
irina1246 [14]

1) See graph in attachment

2) 10 s

3) 50 m

Explanation:

1)

In this problem, we have an object initially moving with a velocity of

v = 10 m/s

when the time is

t = 0 s

Then, we are told that the speed of the object is decreasing by 1 m/s every  second. This means that on a velocity-time graph, the motion will be represented by a straight line, starting from v = 10 when t = 0, and decreasing by 1 m/s every second.

The result can be found in the graph in attachment.

Moreover, we can also infer that the motion of the object is accelerated (because velocity is changing), and that the acceleration is constant and it is equal to

a=1 m/s^2

which is equivalent to the gradient of the line in the velocity-time graph.

2)

In this part, we want to find after what time the body will stop its motion.

To do that, we can use the following suvat equation:

v=u+at

where

v is the final velocity

u is the initial velocity

a is the acceleration

t is the time

In this problem:

u = 10 m/s is the initial velocity of the body

a=-1 m/s^2 is the acceleration

v = 0 m/s, because we want to find the time T at which the body will stop

Re-arranging the equation, we find:

T=-\frac{u}{a}=-\frac{10}{-1}=10 s

3)

In order to find the total distance covered by the body during its accelerated motion, we have to use another suvat equation:

s=ut+\frac{1}{2}at^2

where

s is the distance covered

u is the initial velocity

t is the time

a is the acceleration

In this problem:

u = 10 m/s is the initial velocity

a=-1 m/s^2 is the acceleration

t = 10 s is the time it takes for the body to stop (found in part 2)

Solving for s, we find the distance covered:

s=(10)(10)+\frac{1}{2}(-1)(10)^2=50 m

7 0
3 years ago
The picture below shows the setup for an experiment involving a 1000 mL beaker, sitting on a burner, filled with 500 mL of water
Vlad1618 [11]

Answer:

bye

Explanation:

bye

4 0
3 years ago
Other questions:
  • (II) The pressure in an ideal gas is cut in half slowly, while
    12·1 answer
  • The frequency of a wave is 10 Hz. If the speed of the wave is 5 m/s, what is the wavelength? A. 0.5 m B. 2 m C. 10 m D. 50 m
    6·1 answer
  • You want to figure out which brand of microwave popcorn pops the most kernels so you can get the most value for your money. You
    9·2 answers
  • Greenhouse gases:___________,
    10·2 answers
  • A 1.78-m3 rigid tank contains steam at 220°C. One-third of the volume is in the liquid phase and the rest is in the vapor form.
    11·1 answer
  • There is a simple relationship between the energy for a photon of light Ephoton in units of eV (electron volts) and its waveleng
    13·1 answer
  • A block with a mass of 0.400 kg is connected to a spring, displaced in the positive direction a distance of 50.0 cm from equilib
    6·1 answer
  • PLS ANSWER WITH EXPLANATION OR SOLUTION (WILL GIVE 50 PTS)
    8·1 answer
  • Hydrometer is a devise used to measure the volume of a liquid. *<br> True<br> False
    12·1 answer
  • Newton's third law states that forces always occur in
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!